SNOSAG6G September   2005  – October 2015 LMV791 , LMV792

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 2.5-V Electrical Characteristics
    6. 6.6 5-V Electrical Characteristics
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Wide Bandwidth at Low Supply Current
      2. 7.3.2 Low Input Referred Noise and Low Input Bias Current
      3. 7.3.3 Low Supply Voltage
      4. 7.3.4 Rail-to-Rail Output and Ground Sensing
      5. 7.3.5 Shutdown Feature
      6. 7.3.6 Small Size
    4. 7.4 Device Functional Modes
      1. 7.4.1 Capacitive Load Tolerance
      2. 7.4.2 Input Capacitance and Feedback Circuit Elements
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Transimpedance Amplifier
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
      2. 8.2.2 Application Curves
      3. 8.2.3 High-Gain, Wideband Transimpedance Amplifier Using the LMV792
      4. 8.2.4 Audio Preamplifier With Bandpass Filtering
      5. 8.2.5 Sensor Interfaces
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Related Links
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

9 Power Supply Recommendations

For proper operation, the power supplies must be properly decoupled. For decoupling the supply lines, TI recommends that 10-nF capacitors be placed as close as possible to the operational amplifier power supply pins. For single-supply, place a capacitor between V+ and V supply leads. For dual supplies, place one capacitor between V+ and ground, and one capacitor between V and ground.