SBOS982E June   2020  – November 2021 OPA2863 , OPA4863 , OPA863

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information: OPA863
    5. 7.5  Thermal Information: OPA2863
    6. 7.6  Thermal Information: OPA4863
    7. 7.7  Electrical Characteristics: 10 V
    8. 7.8  Electrical Characteristics: 3 V
    9. 7.9  Typical Characteristics: VS = 10 V
    10. 7.10 Typical Characteristics: VS = 3 V
    11. 7.11 Typical Characteristics: VS = 3 V to 10 V
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input Stage
      2. 8.3.2 Output Stage
        1. 8.3.2.1 Overload Power Limit
      3. 8.3.3 ESD Protection
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-Down Mode
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Low-Side Current Sensing
      1. 9.2.1 Design Requirements
    3. 9.3 Front-End Gain and Filtering
    4. 9.4 Low-Power SAR ADC Driver and Reference Buffer
    5. 9.5 Variable Reference Generator Using MDAC
    6. 9.6 Clamp-On Ultrasonic Flow Meter
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Thermal Considerations
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

The OPAx863 devices are intended to operate on supplies ranging from 2.7 V to 12.6 V. The OPAx863 devices may operate on single-sided supplies, split and balanced bipolar supplies, or unbalanced bipolar supplies. Operating from a single supply can have numerous advantages. The DC errors, due to the –PSRR term, can be minimized with the negative supply at ground. Typically, AC performance improves slightly at 10-V operation with minimal increase in supply current. Minimize the distance (< 0.1 in) from the power supply pins to high-frequency, 0.01-µF decoupling capacitors. A larger capacitor (2.2 µF typical) is used along with a high-frequency, 0.01-µF supply-decoupling capacitor at the device supply pins. Only the positive supply has these capacitors for single-supply operation. Use these capacitors from each supply to ground when a split-supply is used. If necessary, place the larger capacitors further from the device and share these capacitors among several devices in the same area of the printed circuit board (PCB). An optional supply decoupling capacitor across the two power supplies (for split-supply operation) reduces second harmonic distortion.