SLLS631E April 2007 – August 2015 SN65HVD1040
PRODUCTION DATA.
| MIN | MAX | UNIT | ||||
|---|---|---|---|---|---|---|
| VCC | Supply voltage(2) | –0.3 | 7 | V | ||
| VI(bus) | Voltage at any bus terminal (CANH, CANL, SPLIT) | –27 | 40 | V | ||
| IO(OUT) | Receiver output current | –20 | 20 | mA | ||
| Voltage input, transient pulse(3), (CANH, CANL, SPLIT) | –200 | 200 | V | |||
| VI | Voltage input (TXD, STB) | –0.5 | 6 | V | ||
| TJ | Junction temperature | –55 | 170 | °C | ||
| Tstg | Storage temperature | –40 | 125 | °C | ||
| VALUE | UNIT | ||||
|---|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | Bus terminals vs GND | ±12000 | V |
| All pins | ±4000 | ||||
| Charged-device model (CDM), per JEDEC specification JESD22-C101(2) | ±1000 | ||||
| Machine model (MM) ANSI/ESDS5.2-1996 | ±200 | ||||
| IEC Contact Discharge (IEC 61000-4-2) | Bus terminals vs GND | ±6000 | |||
| MIN | NOM | MAX | UNIT | |||
|---|---|---|---|---|---|---|
| VCC | Supply voltage | 4.75 | 5.25 | V | ||
| VI or VIC | Voltage at any bus terminal (separately or common mode) | –12(1) | 12 | V | ||
| VIH | High-level input voltage | TXD, STB | 2 | 5.25 | V | |
| VIL | Low-level input voltage | 0 | 0.8 | V | ||
| VID | Differential input voltage | –6 | 6 | V | ||
| IOH | High-level output current | Driver | –70 | mA | ||
| Receiver | –2 | |||||
| IOL | Low-level output current | Driver | 70 | mA | ||
| Receiver | 2 | |||||
| tSS | Maximum pulse width to remain in standby | 0.7 | μs | |||
| TJ | Junction temperature | –40 | 150 | °C | ||
| THERMAL METRIC(1) | SN65HVD1040 | UNIT | ||
|---|---|---|---|---|
| D (SOIC) | ||||
| 8 PINS | ||||
| RθJA | Junction-to-ambient thermal resistance | Low-K Thermal Resistance(2) | 211 | °C/W |
| High-K Thermal Resistance | 131 | °C/W | ||
| RθJC(top) | Junction-to-case (top) thermal resistance | 79 | °C/W | |
| RθJB | Junction-to-board thermal resistance | 53.9 | °C/W | |
| ψJT | Junction-to-top characterization parameter | 15.4 | °C/W | |
| ψJB | Junction-to-board characterization parameter | 53.2 | °C/W | |
| PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| VO(D) | Bus output voltage (Dominant) | CANH | VI = 0 V, STB at 0 V, RL = 60 Ω, See Figure 11 and Figure 12 | 2.9 | 3.4 | 4.5 | V |
| CANL | 0.8 | 1.75 | |||||
| VO®) | Bus output voltage (Recessive) | VI = 3 V, STB at 0 V, See Figure 11 and Figure 12 | 2 | 2.5 | 3 | V | |
| VO | Bus output voltage (Standby) | RL = 60 Ω, STB at VCC, See Figure 11 and Figure 12 | –0.1 | 0.1 | V | ||
| VOD(D) | Differential output voltage (Dominant) | VI = 0 V, RL = 60 Ω, STB at 0 V, See Figure 11 and Figure 12, and Figure 13 | 1.5 | 3 | V | ||
| VI = 0 V, RL = 45 Ω, STB at 0 V, See Figure 11 and Figure 12 | 1.4 | 3 | |||||
| VSYM | Output symmetry (Dominant or Recessive) [ VO(CANH) + VO(CANL) ] | STB at 0 V, See Figure 12 and Figure 23 | 0.9 × VCC | VCC | 1.1×VCC | V | |
| VOD®) | Differential output voltage (Recessive) | VI = 3 V, RL = 60 Ω, STB at 0 V, See Figure 11 and Figure 12 | –0.012 | 0.012 | V | ||
| VI = 3 V, STB at 0 V, No Load | –0.5 | 0.05 | |||||
| VOC(D) | Common-mode output voltage (Dominant) | STB at 0 V, See Figure 18 | 2 | 2.3 | 3 | V | |
| VOC(pp) | Peak-to-peak common-mode output voltage | 0.3 | |||||
| IIH | High-level input current, TXD input | VI at VCC | –2 | 2 | μA | ||
| IIL | Low-level input current, TXD input | VI at 0 V | –50 | –10 | μA | ||
| IO(off) | Power-off TXD Leakage current | VCC at 0 V, TXD at 5 V | 1 | μA | |||
| IOS(ss) | Short-circuit steady-state output current | VCANH = –12 V, CANL Open, See Figure 22 | –120 | –72 | mA | ||
| VCANH = 12 V, CANL Open, See Figure 22 | 0.36 | 1 | |||||
| VCANL = –12 V, CANH Open, See Figure 22 | –1 | –0.5 | |||||
| VCANL = 12 V, CANH Open, See Figure 22 | 71 | 120 | |||||
| CO | Output capacitance | See Input capacitance to ground in Receiver Electrical Characteristics. | |||||
| PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| VIT+ | Positive-going input threshold voltage | High-speed mode | STB at 0 V, see Table 1 | 800 | 900 | mV | |
| VIT– | Negative-going input threshold voltage | 500 | 650 | ||||
| Vhys | Hysteresis voltage (VIT+ – VIT–) | STB at VCC | 100 | 125 | |||
| VIT | Input threshold voltage | Standby mode | STB at VCC | 500 | 1150 | ||
| VOH | High-level output voltage | IO = –2 mA, see Figure 16 | 4 | 4.6 | V | ||
| VOL | Low-level output voltage | IO = 2 mA, see Figure 16 | 0.2 | 0.4 | V | ||
| II(off) | Power-off bus input current | CANH or CANL = 5 V, VCC at 0 V, TXD at 0 V |
5 | μA | |||
| IO(off) | Power-off RXD leakage current | VCC at 0 V, RXD at 5 V | 20 | μA | |||
| CI | Input capacitance to ground, (CANH or CANL) | TXD at 3 V, VI = 0.4 sin (4E6πt) + 2.5 V | 20 | pF | |||
| CID | Differential input capacitance | TXD at 3 V, VI = 0.4 sin (4E6πt) | 10 | pF | |||
| RID | Differential input resistance | TXD at 3 V, STD at 0 V | 30 | 80 | kΩ | ||
| RIN | Input resistance, (CANH or CANL) | TXD at 3 V, STD at 0 V | 15 | 30 | 40 | ||
| RI(m) | Input resistance matching [1 – RIN (CANH) / RIN (CANL))] x 100% |
VCANH = VCANL | –3% | 0% | 3% | ||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| tloop1 | Total loop delay, driver input to receiver output, Recessive to Dominant | STB at 0 V, see Figure 19 |
90 | 230 | ns | |
| tloop2 | Total loop delay, driver input to receiver output, Dominant to Recessive | 90 | 230 | |||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| tPLH | Propagation delay time, low-to-high-level output | STB at 0 V, see Figure 14 | 25 | 65 | 120 | ns |
| tPHL | Propagation delay time, high-to-low-level output | 25 | 45 | 120 | ||
| tsk(p) | Pulse skew (|tPHL – tPLH|) | 25 | ||||
| tr | Differential output signal rise time | 25 | ||||
| tf | Differential output signal fall time | 50 | ||||
| ten | Enable time from silent mode to dominant | See Figure 17 | 10 | μs | ||
| tdom | Dominant time-out | See Figure 20 | 300 | 450 | 700 | μs |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| tpLH | Propagation delay time, low-to-high-level output | STB at 0 V, TXD at 3 V, See Figure 16 | 60 | 100 | 130 | ns |
| tpHL | Propagation delay time, high-to-low-level output | 45 | 70 | 130 | ||
| tr | Output signal rise time | 8 | ||||
| tf | Output signal fall time | 8 | ||||
| tBUS | Dominant time required on bus for wakeup from standby(1) | STB at VCC Figure 21 | 0.7 | 5 | μs | |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| PD | Device Power Dissipation | RL = 60 Ω, S at 0 V, Input to TXD a 500kHz 50% duty-cycle square wave |
112 | 170 | mW | |
| TJS | Junction Temperature, Thermal Shutdown (1) | 190 | °C | |||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| ICC | Supply current, VCC | Dominant | VI = 0 V, 60 Ω Load, STB at 0 V | 50 | 70 | mA | |
| Recessive | VI = VCC, STB at 0 V | 6 | 10 | ||||
| Standby | STB at VCC, VI = VCC | 5 | 12 | μA | |||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| VO | Output voltage | –500 μA < IO < 500 μA | 0.3 × VCC | 0.5 × VCC | 0.7 × VCC | V |
| IO(stb) | Standby mode leakage current | STB at 2 V, –12 V ≤ VO ≤ 12 V | –5 | 5 | μA | |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| IIH | High level input current | STB at 2 V | –10 | 0 | μA | |
| IIL | Low level input current | STB at 0 V | –10 | 0 | μA | |
Figure 1. Recessive-to-Dominant Loop Time vs Free-Air Temperature (Across Vcc)
Figure 3. Supply Current (RMS) vs Signaling Rate
Figure 5. Driver High-Level Output Voltage vs High-Level Output Current
Figure 7. Driver Output Current vs Supply Voltage
Figure 9. Frequency Spectrum of Common-Mode Emissions
Figure 2. Dominant-to-Recessive Loop Time vs Free-Air Temperature (Across Vcc)
Figure 4. Driver Low-Level Output Voltage vs Low-Level Output Current
Figure 6. Driver Differential Output Voltage vs Free-Air Temperature (Across Vcc)
Figure 8. Receiver Output Voltage vs Differential Input Voltage
Figure 10. Direct Power Injection (DPI) Response vs Frequency