SLLSFG7B September   2020  – November 2022 SN65MLVD203B

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Electrical Characteristics – Driver
    7. 6.7  Electrical Characteristics – Receiver
    8. 6.8  Switching Characteristics – Driver
    9. 6.9  Switching Characteristics – Receiver
    10. 6.10 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1 Power-On-Reset
      2. 8.3.2 ESD Protection
      3. 8.3.3 RX Maximum Jitter While DE Toggling
    4. 8.4 Device Functional Modes
      1. 8.4.1 Operation with VCC < 1.5 V
      2. 8.4.2 Operations with 1.5 V ≤ VCC < 3 V
      3. 8.4.3 Operation with 3 V ≤ VCC < 3.6 V
      4. 8.4.4 Device Function Tables
      5. 8.4.5 Equivalent Input and Output Schematic Diagrams
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Multipoint Communications
      2. 9.2.2 Design Requirements
      3. 9.2.3 Detailed Design Procedure
        1. 9.2.3.1  Supply Voltage
        2. 9.2.3.2  Supply Bypass Capacitance
        3. 9.2.3.3  Driver Input Voltage
        4. 9.2.3.4  Driver Output Voltage
        5. 9.2.3.5  Termination Resistors
        6. 9.2.3.6  Receiver Input Signal
        7. 9.2.3.7  Receiver Input Threshold (Failsafe)
        8. 9.2.3.8  Receiver Output Signal
        9. 9.2.3.9  Interconnecting Media
        10. 9.2.3.10 PCB Transmission Lines
      4. 9.2.4 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Microstrip vs. Stripline Topologies
        2. 9.4.1.2 Dielectric Type and Board Construction
        3. 9.4.1.3 Recommended Stack Layout
        4. 9.4.1.4 Separation Between Traces
        5. 9.4.1.5 Crosstalk and Ground Bounce Minimization
        6. 9.4.1.6 Decoupling
      2. 9.4.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  11. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Switching Characteristics – Receiver

over recommended operating conditions unless otherwise noted
PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT
tPLH Propagation delay time, low-to-high-level output CL = 15 pF, See Figure 7-10 2 6 10 ns
tPHL Propagation delay time, high-to-low-level output 2 6 10 ns
tr Output signal rise time 2.3 ns
tf Output signal fall time 2.3 ns
tsk(p) Pulse skew (|tpHL – tpLH|)   Type 1 CL = 15 pF, See Figure 7-10 80 600 ps
tsk(pp) Part-to-part skew(2) CL = 15 pF, See Figure 7-10 1 ns
tjit(per) Period jitter, rms (1 standard deviation)(3) 62.5-MHz clock input(4) 5 ps
tjit(per) Period jitter, rms (1 standard deviation)(3) 100-MHz clock input(4) 3 ps
tjit(pp) Peak-to-peak jitter(3) (6) Type 1 125 Mbps 8b10b input(5) 130 ps
tjit(pp) Peak-to-peak jitter(3) (6) Type 1 200 Mbps 8b10b input(5) 250 ps
tjit(pp) Peak-to-peak jitter(3) (6) Type 1 200 Mbps 215 –1 PRBS input(5) 300 ps
tPHZ Disable time, high-level-to-high-impedance output See Figure 7-11 6 10 ns
tPLZ Disable time, low-level-to-high-impedance output 6 10 ns
tPZH Enable time, high-impedance-to-high-level output 10 15 ns
tPZL Enable time, high-impedance-to-low-level output 10 15 ns
All typical values are at 25°C and with a 3.3-V supply voltage.
Part-to-part skew is defined as the difference in propagation delays between two devices that operate at the same V/T conditions.
Jitter is ensured by design and characterization. Stimulus jitter has been subtracted from the numbers.
VID = 200 mVpp , Vcm = 1 V, tr = tf = 0.5 ns (10% to 90%), measured over 30K samples.
VID = 200 mVpp , Vcm = 1 V, tr = tf = 0.5 ns (10% to 90%), measured over 100K samples.
Peak-to-peak jitter includes jitter due to pulse skew (tsk(p))