SCLS738D September   2013  – October 2023 SN74LV1T04

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Related Products
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Switching Characteristics
    7. 7.7 Operating Characteristics
    8. 7.8 Typical Characteristics
  9. Parameter Measurement Information
  10. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Clamp Diode Structure
      2. 9.3.2 Balanced CMOS Push-Pull Outputs
    4. 9.4 LVxT Enhanced Input Voltage
      1. 9.4.1 Down Translation
      2. 9.4.2 Up Translation
    5. 9.5 Device Functional Modes
  11. 10Application and Implementation
    1. 10.1 Power Supply Recommendations
    2. 10.2 Layout
      1. 10.2.1 Layout Guidelines
  12. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Support Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Up Translation

Input signals can be up translated using the SN74LV1T04. The voltage applied at VCC will determine the output voltage and the input thresholds as described in the Recommended Operating Conditions and Electrical Characteristics tables. When connected to a high-impedance input, the output voltage will be approximately VCC in the HIGH state, and 0 V in the LOW state.

The inputs have reduced thresholds that allow for input HIGH state levels which are much lower than standard values. For example, standard CMOS inputs for a device operating at a 5-V supply will have a VIH(MIN) of 3.5 V. For the SN74LV1T04, VIH(MIN) with a 5-V supply is only 2 V, which would allow for up-translation from a typical 2.5-V to 5-V signals.

Ensure that the input signals in the HIGH state are above VIH(MIN) and input signals in the LOW state are lower than VIL(MAX) as shown in Figure 9-4.

Up Translation Combinations are as follows:

  • 1.8-V VCC – Inputs from 1.2 V
  • 2.5-V VCC – Inputs from 1.8 V
  • 3.3-V VCC – Inputs from 1.8 V and 2.5 V
  • 5.0-V VCC – Inputs from 2.5 V and 3.3 V

GUID-26477C85-7F66-443F-9AC7-755CB7C95D5A-low.gif Figure 9-4 LVxT Up and Down Translation Example