JAJSLA9E may   2015  – april 2023 DLP7000UV

PRODUCTION DATA  

  1. 特長
  2. アプリケーション
  3. 概要
  4. Revision History
  5. 概要 (続き)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  Storage Conditions
    3. 7.3  ESD Ratings
    4. 7.4  Recommended Operating Conditions
    5. 7.5  Thermal Information
    6. 7.6  Electrical Characteristics
    7. 7.7  LVDS Timing Requirements
    8. 7.8  LVDS Waveform Requirements
    9. 7.9  Serial Control Bus Timing Requirements
    10. 7.10 Systems Mounting Interface Loads
    11. 7.11 Micromirror Array Physical Characteristics
    12. 7.12 Micromirror Array Optical Characteristics
    13. 7.13 Window Characteristics
    14. 7.14 Chipset Component Usage Specification
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 DLPC410 - Digital Controller for DLP Discovery 4100 Chipset
      2. 8.3.2 DLPA200 DMD Micromirror Driver
      3. 8.3.3 DLPR410 - PROM for DLP Discovery 4100 Chipset
      4. 8.3.4 DLP7000 - DLP 0.7 XGA 2xLVDS UV Type-A DMD
        1. 8.3.4.1 DLP7000UV Chipset Interfaces
          1. 8.3.4.1.1 DLPC410 Interface Description
            1. 8.3.4.1.1.1 DLPC410 IO
            2. 8.3.4.1.1.2 Initialization
            3. 8.3.4.1.1.3 DMD Device Detection
            4. 8.3.4.1.1.4 Power Down
        2. 8.3.4.2 DLPC410 to DMD Interface
          1. 8.3.4.2.1 DLPC410 to DMD IO Description
          2. 8.3.4.2.2 Data Flow
        3. 8.3.4.3 DLPC410 to DLPA200 Interface
          1. 8.3.4.3.1 DLPA200 Operation
          2. 8.3.4.3.2 DLPC410 to DLPA200 IO Description
        4. 8.3.4.4 DLPA200 to DLP7000UV Interface Overview
      5. 8.3.5 Measurement Conditions
    4. 8.4 Device Functional Modes
      1. 8.4.1 DMD Operation
        1. 8.4.1.1 Single Block Mode
        2. 8.4.1.2 Dual Block Mode
        3. 8.4.1.3 Quad Block Mode
        4. 8.4.1.4 Global Mode
    5. 8.5 Window Characteristics and Optics
      1. 8.5.1 Optical Interface and System Image Quality
      2. 8.5.2 Numerical Aperture and Stray Light Control
      3. 8.5.3 Pupil Match
      4. 8.5.4 Illumination Overfill
    6. 8.6 Micromirror Array Temperature Calculation
      1. 8.6.1 Package Thermal Resistance
      2. 8.6.2 Case Temperature
      3. 8.6.3 Micromirror Array Temperature Calculation
    7. 8.7 Micromirror Landed-On/Landed-Off Duty Cycle
      1. 8.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 8.7.2 Landed Duty Cycle and Useful Life of the DMD
      3. 8.7.3 Landed Duty Cycle and Operational DMD Temperature
      4. 8.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 DMD Reflectivity Characteristics
      2. 9.1.2 Design Considerations Influencing DMD Reflectivity
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
    1. 10.1 Power-Up Sequence (Handled by the DLPC410)
  11. 11Layout
    1. 11.1 Layout Guidelines
      1. 11.1.1 Impedance Requirements
      2. 11.1.2 PCB Signal Routing
      3. 11.1.3 Fiducials
      4. 11.1.4 PCB Layout Guidelines
        1. 11.1.4.1 DMD Interface
          1. 11.1.4.1.1 Trace Length Matching
        2. 11.1.4.2 DLP7000UV Decoupling
          1. 11.1.4.2.1 Decoupling Capacitors
        3. 11.1.4.3 VCC and VCC2
        4. 11.1.4.4 DMD Layout
        5. 11.1.4.5 DLPA200
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Device Nomenclature
        1. 12.1.1.1 Device Marking
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Related Links
    4. 12.4 サポート・リソース
    5. 12.5 Trademarks
    6. 12.6 静電気放電に関する注意事項
    7. 12.7 用語集
  13. 13Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Micromirror Array Optical Characteristics

TI assumes no responsibility for end-equipment optical performance. Achieving the desired end-equipment optical performance involves making trade-offs between numerous component and system design parameters.

PARAMETERTEST CONDITIONSMINNOMMAXUNIT
aMicromirror tilt angleDMD parked state (1) (2) (3), See Figure 8-60degrees
DMD landed state (1) (4) (5)
See Figure 8-6
12
βMicromirror tilt angle tolerance (1) (4) (6) (7) (8)See Figure 8-6–11degrees
Micromirror crossover time (9)422µs
Micromirror switching time (10)12.5µs
Array switching time at 400 MHz with global reset (11)43µs
Non operating micromirrors (12)Non-adjacent micromirrors10micromirrors
Adjacent micromirrors0
Orientation of the micromirror axis-of-rotation (13)See Figure 8-5444546degrees
Micromirror array optical efficiency (14) (15)363 to 420 nm, with all micromirrors in the ON state66%
Measured relative to the plane formed by the overall micromirror array.
Parking the micromirror array returns all of the micromirrors to an essentially flat (0°) state (as measured relative to the plane formed by the overall micromirror array).
When the micromirror array is parked, the tilt angle of each individual micromirror is uncontrolled.
Additional variation exists between the micromirror array and the package datums, as shown in the Mechanical, Packaging, and Orderable Information.
When the micromirror array is landed, the tilt angle of each individual micromirror is dictated by the binary contents of the CMOS memory cell associated with each individual micromirror. A binary value of 1 will result in a micromirror landing in an nominal angular position of +12°. A binary value of 0 results in a micromirror landing in an nominal angular position of –12°.
Represents the landed tilt angle variation relative to the Nominal landed tilt angle.
Represents the variation that can occur between any two individual micromirrors, located on the same device or located on different devices.
For some applications, it is critical to account for the micromirror tilt angle variation in the overall System Optical Design. With some System Optical Designs, the micromirror tilt angle variation within a device may result in perceivable non-uniformities in the light field reflected from the micromirror array. With some System Optical Designs, the micromirror tilt angle variation between devices may result in colorimetry variations and/or system contrast variations.
Micromirror crossover time is primarily a function of the natural response time of the micromirrors and is the time it takes for the micromirror to crossover to the other state, but does not include mechanical settling time.
Micromirror switching time is the time before a micromirror may be addressed again. Crossover time plus mechanical settling time.
Array switching is controlled and coordinated by the DLPC410 (DLPS024) and DLPA200 (DLPS015). Nominal Switching time depends on the system implementation and represents the time for the entire micromirror array to be refreshed (array loaded plus reset and mirror settling time).
Non-operating micromirror is defined as a micromirror that is unable to transition nominally from the –12° position to +12° or vice versa.
Measured relative to the package datums B and C, shown in the Mechanical, Packaging, and Orderable Information.
The minimum or maximum DMD optical efficiency observed depends on numerous application-specific design variables, such as:
  • Illumination wavelength, bandwidth/line-width, degree of coherence
  • Illumination angle, plus angle tolerance
  • Illumination and projection aperture size, and location in the system optical path
  • IIlumination overfill of the DMD micromirror array
  • Aberrations present in the illumination source and/or path
  • Aberrations present in the projection path

The specified nominal DMD optical efficiency is based on the following use conditions:
  • Visible illumination (363 to 420 nm)
  • Input illumination optical axis oriented at 24° relative to the window normal
  • Projection optical axis oriented at 0° relative to the window normal
  • f / 3.0 illumination aperture
  • f / 2.4 projection aperture

Based on these use conditions, the nominal DMD optical efficiency results from the following four components:
  • Micromirror array fill factor: nominally 92%
  • Micromirror array diffraction efficiency: nominally 85%
  • Micromirror surface reflectivity: nominally 88%
  • Window transmission: nominally 98% for wavelengths 363 nm to 420 nm, applies to all angles 0° to 30° AOI (Angle of Incidence) (single pass, through two surface transitions)
Does not account for the effect of micromirror switching duty cycle, which is application dependent. Micromirror switching duty cycle represents the percentage of time that the micromirror is actually reflecting light from the optical illumination path to the optical projection path. This duty cycle depends on the illumination aperture size, the projection aperture size, and the micromirror array update rate.