JAJSJH9A april   2023  – july 2023 TPS62876-Q1

PRODMIX  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6.   Device Options
  7. Pin Configuration and Functions
  8. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings - Q100
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Interface Timing Characteristics
    7. 6.7 Typical Characteristics
  9. Parameter Measurement Information
  10. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Fixed-Frequency DCS-Control Topology
      2. 8.3.2  Forced-PWM and Power-Save Modes
      3. 8.3.3  Transient Non-Synchronous Mode (optional)
      4. 8.3.4  Precise Enable
      5. 8.3.5  Start-Up
      6. 8.3.6  Switching Frequency Selection
      7. 8.3.7  Output Voltage Setting
        1. 8.3.7.1 Output Voltage Range
        2. 8.3.7.2 Output Voltage Setpoint
        3. 8.3.7.3 Non-Default Output Voltage Setpoint
        4. 8.3.7.4 Dynamic Voltage Scaling
        5. 8.3.7.5 Droop Compensation
      8. 8.3.8  Compensation (COMP)
      9. 8.3.9  Mode Selection / Clock Synchronization (MODE/SYNC)
      10. 8.3.10 Spread Spectrum Clocking (SSC)
      11. 8.3.11 Output Discharge
      12. 8.3.12 Undervoltage Lockout (UVLO)
      13. 8.3.13 Overvoltage Lockout (OVLO)
      14. 8.3.14 Overcurrent Protection
        1. 8.3.14.1 Cycle-by-Cycle Current Limiting
        2. 8.3.14.2 Hiccup Mode
        3. 8.3.14.3 Current-Limit Mode
      15. 8.3.15 Power Good (PG)
        1. 8.3.15.1 Standalone / Primary Device Behavior
        2. 8.3.15.2 Secondary Device Behavior
      16. 8.3.16 Remote Sense
      17. 8.3.17 Thermal Warning and Shutdown
      18. 8.3.18 Stacked Operation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-On Reset
      2. 8.4.2 Undervoltage Lockout
      3. 8.4.3 Standby
      4. 8.4.4 On
    5. 8.5 Programming
      1. 8.5.1 Serial Interface Description
      2. 8.5.2 Standard-, Fast-, Fast-Mode Plus Protocol
      3. 8.5.3 HS-Mode Protocol
      4. 8.5.4 I2C Update Sequence
      5. 8.5.5 I2C Register Reset
      6. 8.5.6 Dynamic Voltage Scaling (DVS)
    6. 8.6 Device Registers
  11. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Selecting the Input Capacitors
        3. 9.2.2.3 Selecting the Compensation Resistor
        4. 9.2.2.4 Selecting the Output Capacitors
        5. 9.2.2.5 Selecting the Compensation Capacitor CC
        6. 9.2.2.6 Selecting the Compensation Capacitor CC2
      3. 9.2.3 Application Curves
    3. 9.3 Application Using Two TPS62876-Q1 in a Stacked Configuration
      1. 9.3.1 Design Requirements For Two Stacked Devices
      2. 9.3.2 Detailed Design Procedure
        1. 9.3.2.1 Selecting the Compensation Resistor
        2. 9.3.2.2 Selecting the Output Capacitors
        3. 9.3.2.3 Selecting the Compensation Capacitor CC
      3. 9.3.3 Application Curves for Two Stacked Devices
    4. 9.4 Application Using Three TPS62876-Q1 in a Stacked Configuration
      1. 9.4.1 Design Requirements For Three Stacked Devices
      2. 9.4.2 Detailed Design Procedure
        1. 9.4.2.1 Selecting the Compensation Resistor
        2. 9.4.2.2 Selecting the Output Capacitors
        3. 9.4.2.3 Selecting the Compensation Capacitor CC
      3. 9.4.3 Application Curves for Three Stacked Devices
    5. 9.5 Best Design Practices
    6. 9.6 Power Supply Recommendations
    7. 9.7 Layout
      1. 9.7.1 Layout Guidelines
      2. 9.7.2 Layout Example
  12. 10Device and Documentation Support
    1. 10.1 ドキュメントの更新通知を受け取る方法
    2. 10.2 サポート・リソース
    3. 10.3 Trademarks
    4. 10.4 静電気放電に関する注意事項
    5. 10.5 用語集
  13. 11Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Layout

Achieving the performance the TPS6287x-Q1 devices are capable of requires proper PDN and PCB design. TI therefore recommends the user perform a power integrity analysis on their design. There are a number of commercially available power integrity software tools, and the user can use these tools to model the effects on performance of the PCB layout and passive components.

In addition to the use of power integrity tools, TI recommends the following basic principles:

  • Place the input capacitors close to the VIN and GND pins. Position the input capacitors in order of increasing size, starting with the smallest capacitors closest to the VIN and GND pins. Use an identical layout for both VIN-GND pin pairs of the package, to gain maximum benefit from the butterfly configuration.
  • Place the inductor close to the device and keep the SW node small.
  • Connect the exposed thermal pad and the GND pins of the device together. Use multiple thermal vias to connect the exposed thermal pad of the device to one or more ground planes (TI's EVM uses nine 150-µm thermal vias).
  • Use multiple power and ground planes.
  • Route the VOSNS and GOSNS remote sense lines on the primary device as a differential pair and connect them to the lowest-impedance point of the PDN. If the desired connection point is not the lowest impedance point of the PDN, optimize the PDN until it is. Do not route the VOSNS and GOSNS close to any of the switch nodes.
  • Connect the compensation components between COMP and AGND. Do not connect the compensation components directly to power ground.
  • If possible, distribute the output capacitors evenly between the TPS6287x-Q1 device and the point-of-load, rather than placing them altogether in one place.
  • Use multiple vias to connect each capacitor pad to the power and ground planes (TI's EVM typically uses four vias per pad).
  • Use plenty of stitching vias to ensure a low impedance connection between different power and ground planes.