SLLA383A February   2018  – August 2022 SN65HVDA100-Q1 , SN65HVDA195-Q1 , TLIN1022-Q1 , TLIN1029-Q1 , TLIN2022-Q1 , TLIN2029-Q1 , TMS320F28P550SJ , TMS320F28P559SJ-Q1

 

  1.   Abstract
  2.   Trademarks
  3. 1Introduction
    1. 1.1 LIN Specification Progression
    2. 1.2 Workflow Concept
  4. 2Network Architecture
    1. 2.1 General Layout of the LIN Bus
    2. 2.2 Serial Communication Principles
    3. 2.3 Commander-Responder Principle
    4. 2.4 Message Frame Format
  5. 3Physical Layer Requirements
    1. 3.1 Bus Signaling Fundamentals
    2. 3.2 Pullup Values
    3. 3.3 Threshold Values
    4. 3.4 Bit-Rate Tolerance and Timing Requirements
    5. 3.5 Synchronization and Bit Sampling
    6. 3.6 Duty Cycle
  6. 4Filtering, Distance Limitations, Nodes on Bus
    1. 4.1 EMI and Signal Conditioning
    2. 4.2 ESD and Transients
    3. 4.3 Distance and Node Limitations
  7. 5LIN Transceiver Special Functions
    1. 5.1 Low-Power Modes
      1. 5.1.1 Sleep Mode
      2. 5.1.2 Standby Mode
    2. 5.2 Wakeup
      1. 5.2.1 Pin Wakeup
      2. 5.2.2 LIN Wakeup
      3. 5.2.3 Dominant Timeout
  8. 6Advantages and Disadvantages
  9. 7Conclusion
  10. 8Revision History

Sleep Mode

Sleep Mode is the low-power mode of LIN transceivers. This mode is used to save power when the LIN transceiver is not needed in any part of the system. The mode is typically entered by putting a logic low on the Enable pin (if there is one) of the device. The name Sleep Mode implies the device is in a less functional state, but is still able to monitor the LIN bus for any wakeup signals (explained further in Section 5.2).

In Sleep mode, the LIN driver is disabled and the internal LIN bus termination is switched off to minimize current draw if the LIN bus is shorted to ground for any reason. A low-power receiver is enabled and the normal receiver function is disabled, and EN input is still active.