SPRUJ40C may   2022  – may 2023

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1EVM Revisions and Assembly Variants
  5. 2System Description
    1. 2.1 Key Features
      1. 2.1.1 Thermal Compliance
      2. 2.1.2 Processor
      3. 2.1.3 Power Supply
      4. 2.1.4 Memory
      5. 2.1.5 JTAG/Emulator
      6. 2.1.6 Supported Interfaces and Peripherals
      7. 2.1.7 Expansion Connectors/Headers to Support Application Specific Add‐On Boards
    2. 2.2 Functional Block Diagram (SK-AM62 and SK-AM62B)
    3. 2.3 Functional Block Diagram (SK-AM62-P1 and SK-AM62B-P1)
    4. 2.4 AM62x SKEVM Interface Mapping
    5. 2.5 Power ON/OFF Procedures
      1. 2.5.1 Power-On Procedure
      2. 2.5.2 Power-Off Procedure
      3. 2.5.3 Power Test Points
    6. 2.6 Peripheral and Major Component Description
      1. 2.6.1  Clocking
        1. 2.6.1.1 Peripheral Ref Clock
      2. 2.6.2  Reset
      3. 2.6.3  OLDI Display Interface
      4. 2.6.4  CSI Interface
      5. 2.6.5  Audio Codec Interface
      6. 2.6.6  HDMI Display Interface
      7. 2.6.7  JTAG Interface
      8. 2.6.8  Test Automation Header
      9. 2.6.9  UART Interface
      10. 2.6.10 USB Interface
        1. 2.6.10.1 USB 2.0 Type A Interface
        2. 2.6.10.2 USB 2.0 Type C Interface
      11. 2.6.11 Memory Interfaces
        1. 2.6.11.1 DDR4 Interface
        2. 2.6.11.2 OSPI Interface
        3. 2.6.11.3 MMC Interfaces
          1. 2.6.11.3.1 MMC0 - eMMC Interface
          2. 2.6.11.3.2 MMC1 - Micro SD Interface
          3. 2.6.11.3.3 MMC2 - Wilink Interface
        4. 2.6.11.4 EEPROM
      12. 2.6.12 Ethernet Interface
        1. 2.6.12.1 CPSW Ethernet PHY 2 Default Configuration
        2. 2.6.12.2 CPSW Ethernet PHY 1 Default Configuration
      13. 2.6.13 GPIO Port Expander
      14. 2.6.14 GPIO Mapping
      15. 2.6.15 Power
        1. 2.6.15.1 Power Requirements
        2. 2.6.15.2 Power Input
        3. 2.6.15.3 Power Supply
        4. 2.6.15.4 Power Sequencing
        5. 2.6.15.5 AM62x SoC Power
        6. 2.6.15.6 Current Monitoring
      16. 2.6.16 AM62x SKEVM User Setup/Configuration
        1. 2.6.16.1 EVM DIP Switches
        2. 2.6.16.2 Boot Modes
        3. 2.6.16.3 User Test LEDs
      17. 2.6.17 Expansion Headers
        1. 2.6.17.1 PRU Connector
        2. 2.6.17.2 User Expansion Connector
        3. 2.6.17.3 MCU Connector
      18. 2.6.18 Interrupt
      19. 2.6.19 I2C Address Mapping
  6. 3Known Issues and Modifications
    1. 3.1  Issue 1 - HDMI/DSS Incorrect Colors on E1
    2. 3.2  Issue 2 - J9 and J10 Header Alignment on E1
    3. 3.3  Issue 3 - USB Boot descoped on E1
    4. 3.4  Issue 4 - OLDI Connector Orientation and Pinout
    5. 3.5  Issue 5 - Bluetooth descoped on E2 EVMs
    6. 3.6  Issue 6 - Ethernet PHY CLK Skew Default Strapping Changes
    7. 3.7  Issue 7 - TEST_POWERDOWN changes
    8. 3.8  Issue 8 - MMC1_SDCD spurious interrupts
    9. 3.9  Issue 9 - PD Controller I2C2 IRQ Not Pinned Out
    10. 3.10 Issue 10 - INA Current Monitor Adress Changes
    11. 3.11 Issue 11 - Test Automation I2C Buffer Changes
  7.   Regulatory Compliance
  8.   Revision History

Test Automation Header

AM62x SKEVM has a 40 pin test automation header (FH12A-40S-0.5SH) to allow an external controller to manipulate some basic operations like Power Down, POR, Warm Reset, Boot Mode control, and so forth.

The Test Automation Circuit is powered by the 3.3 V supply generated by a dedicated regulator Mfr. Part# TPS62177DQCR. The SoC’s I2C1 is connected to the test automation header. Another I2C instance (BOOTMODE_I2C) from the Test Automation Header is connected to the 24-bit I2C boot mode IO Expander of Mfr. Part# TCA6424ARGJR to allow control of the boot modes for the AM62x SoC.

The test automation circuit has voltage translation circuits so that the controller is isolated from the IO voltages used by the AM62x. Boot mode for the AM62x must be controlled by either the user using DIP Switches or the test automation header through the I2C IO Expander. Boot Mode Buffers are used to isolate the Boot Mode controls driven through DIP Switches or I2C IO Expander. The boot mode is controlled by the user using two 8-bit DIP switches on the board, which will connect a pull-up resistor to the output of a buffer when the switch is set to the ON position and to weaker pull-down resistor when set to the OFF position. The output of the buffer is connected to the boot mode pins on the AM62x SoC and the output is enabled when the boot mode is needed during a reset cycle.

When boot mode is to be set through Test Automation header, the required switch values are set at the I2C IO expander output, which overwrites the DIP switch values to give the desired boot values to the SoC. The pins used for boot mode also have other functions which will be isolated by disabling the boot mode buffer during normal operation.

The power down signal from the Test automation header instructs the SKEVM to power down all the rails except for dedicated power supplies on the board. Similarly PORZn signal is also provided to give a hard reset to the SoC and WARM_RESETn for warm reset of the SoC. One Interrupt signal from the Test Automation header is going to the SoC GPIO (MCU_GPIO0_15) for providing an external Interrupt.

GUID-C98B5E88-D16B-4BFF-A5FE-50BB1ABC8C8A-low.png
Table 2-8 Test Automation Connector (J23) Pin-out
Pin No. Signal IO Direction Pin No. Signal IO Direction
1 VCC3V3_TA Power 21 NC NA
2 VCC3V3_TA Power 22 NC NA
3 VCC3V3_TA Power 23 NC NA
4 NC NA 24 NC NA
5 NC NA 25 DGND Power
6 NC NA 26 TEST_POWERDOWN Input
7 DGND Power 27 TEST_PORZn Input
8 NC NA 28 TEST_WARMRESETn Input
9 NC NA 29 NC NA
10 NC NA 30 TEST_GPIO1 Bidirectional
11 NC NA 31 TEST_GPIO2 Bidirectional
12 NC NA 32 TEST_GPIO3 Input
13 NC NA 33 TEST_GPIO4 Input
14 NC NA 34 DGND Power
15 NC NA 35 NC NA
16 DGND Power 36 SoC_I2C1_TA_SCL Bidirectional
17 NC NA 37 BOOTMODE_I2C_SCL Bidirectional
18 NC NA 38 SoC_I2C1_TA_SDA Bidirectional
19 NC NA 39 BOOTMODE_I2C_SDA Bidirectional
20 NC NA 40 DGND Power