SBAA534 March   2022 ADC128S102-SEP , ADC128S102QML-SP , ADS1278-SP , ADS1282-SP , LF411QML-SP , LM101AQML-SP , LM111QML-SP , LM119QML-SP , LM124-SP , LM124AQML-SP , LM136A-2.5QML-SP , LM139-SP , LM139AQML-SP , LM148JAN-SP , LM158QML-SP , LM185-1.2QML-SP , LM185-2.5QML-SP , LM193QML-SP , LM4050QML-SP , LM6172QML-SP , LM7171QML-SP , LMH5401-SP , LMH5485-SEP , LMH5485-SP , LMH6628QML-SP , LMH6702QML-SP , LMH6715QML-SP , LMP2012QML-SP , LMP7704-SP , OPA4277-SP , OPA4H014-SEP , OPA4H199-SEP , THS4304-SP , THS4511-SP , THS4513-SP , TL1431-DIE , TL1431-SP , TLC2201-SP , TLV1704-SEP

 

  1. 1Component and Topology Selection - Finding a Good Starting Point Quickly
  2. 2Verification
    1. 2.1 Detailed Design Procedure – Verification of the Time Domain Response
    2. 2.2 Analysis of Total Noise
    3. 2.3 Linearity or Frequency Response
    4. 2.4 Stability
    5. 2.5 Settling Time
  3. 3Summary

Verification

This chapter shows how to verify the example design towards the desired design goals with the help of both the TINA TI Simulator tool and the ANALOG-ENGINEER’S CALCULATOR. The section also shows how to verify that the signal chain performs to the full differential and common-mode input range of the ADC. Then the total noise performance and the linearity are observed to determine if the ENOB target can be met, followed by a stability analysis and verification of the input impedance. Finally, the chapter provides proof that the circuit meets the settling time requirement of the sample and hold capacitor of the ADC.