SBOSAC3B July   2023  – August 2025 INA745A , INA745B

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements (I2C)
    7. 5.7 Timing Diagram
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Integrated Shunt Resistor
      2. 6.3.2 Safe Operating Area
      3. 6.3.3 Versatile Measurement Capability
      4. 6.3.4 Internal Measurement and Calculation Engine
      5. 6.3.5 High-Precision Delta-Sigma ADC
        1. 6.3.5.1 Low Latency Digital Filter
        2. 6.3.5.2 Flexible Conversion Times and Averaging
      6. 6.3.6 Integrated Precision Oscillator
      7. 6.3.7 Multi-Alert Monitoring and Fault Detection
    4. 6.4 Device Functional Modes
      1. 6.4.1 Shutdown Mode
      2. 6.4.2 Power-On Reset
    5. 6.5 Programming
      1. 6.5.1 I2C Serial Interface
        1. 6.5.1.1 Writing to and Reading Through the I2C Serial Interface
        2. 6.5.1.2 High-Speed I2C Mode
        3. 6.5.1.3 SMBus Alert Response
  8. Register Maps
    1. 7.1 INA745x Registers
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Device Measurement Range and Resolution
      2. 8.1.2 ADC Output Data Rate and Noise Performance
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Configure the Device
        2. 8.2.2.2 Set Desired Fault Thresholds
        3. 8.2.2.3 Calculate Returned Values
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Calculate Returned Values

Multiply the returned value by the LSB value to calculate the parametric values. Table 8-4 below shows the returned values for this application example assuming the design requirements shown in Table 8-3.

Table 8-4 Calculating Returned Values
PARAMETERRETURNED VALUELSB VALUECALCULATED VALUE
Current (A)15000d, 3A98h1.2mA/LSB18A
Bus voltage (V)3840d, F00h3.125mV/LSB12V
Power (W) 900000d, DBBA0h 240µW/LSB216W
Energy (J)50625000d, 30479E8h3.84mJ/LSB194400J
Charge (C)216000000d, CDFE600 h 75µC/LSB16200C
Temperature (°C)680d, 2A8h125m°C/LSB85°C

Current, Bus Voltage (positive only), Charge, and Temperature return values in 2's complement format. In a 2's complement format, a 1 in the most significant bit of the returned value represents a negative value in binary. These values can be converted to decimal by first iwnverting all the bits and adding 1 to obtain the unsigned binary value. This value must then be converted to decimal with the negative sign applied.