SLLSEU2C March   2017  – December 2024 ISO7710-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
  7. Absolute Maximum Ratings
  8. ESD Ratings
  9. Recommended Operating Conditions
  10. Thermal Information
  11. 10Power Ratings
  12. 11Insulation Specifications
  13. 12Safety-Related Certifications
  14. 13Safety Limiting Values
  15. 14Electrical Characteristics—5-V Supply
  16. 15Supply Current Characteristics—5-V Supply
  17. 16Electrical Characteristics—3.3-V Supply
  18. 17Supply Current Characteristics—3.3-V Supply
  19. 18Electrical Characteristics—2.5-V Supply 
  20. 19Supply Current Characteristics—2.5-V Supply
  21. 20Switching Characteristics—5-V Supply
  22. 21Switching Characteristics—3.3-V Supply
  23. 22Switching Characteristics—2.5-V Supply
  24. 23Parameter Measurement Information
  25. 24Detailed Description
    1. 24.1 Overview
    2. 24.2 Functional Block Diagram
    3. 24.3 Feature Description
      1. 24.3.1 Electromagnetic Compatibility (EMC) Considerations
    4. 24.4 Device Functional Modes
      1. 24.4.1 Device I/O Schematics
  26. 25Application and Implementation
    1. 25.1 Application Information
    2. 25.2 Typical Application
      1. 25.2.1 Design Requirements
      2. 25.2.2 Detailed Design Procedure
      3. 25.2.3 Application Curve
        1. 25.2.3.1 Insulation Lifetime
    3. 25.3 Power Supply Recommendations
    4. 25.4 Layout
      1. 25.4.1 Layout Guidelines
        1. 25.4.1.1 PCB Material
      2. 25.4.2 Layout Example
  27. 26Device and Documentation Support
    1. 26.1 Documentation Support
      1. 26.1.1 Related Documentation
    2. 26.2 Related Links
    3. 26.3 Receiving Notification of Documentation Updates
    4. 26.4 Support Resources
    5. 26.5 Trademarks
    6. 26.6 Electrostatic Discharge Caution
    7. 26.7 Glossary
  28. 27Revision History
  29. 28Mechanical, Packaging, and Orderable Information

Electromagnetic Compatibility (EMC) Considerations

Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the ISO7710-Q1 device incorporates many chip-level design improvements for overall system robustness. Some of these improvements include:

  • Robust ESD protection cells for input and output signal pins and inter-chip bond pads.
  • Low-resistance connectivity of ESD cells to supply and ground pins.
  • Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.
  • Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance path.
  • PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic SCRs.
  • Reduced common mode currents across the isolation barrier by providing purely differential internal operation.