SLOS181D February   1997  – January 2026 TLE2071 , TLE2071A , TLE2071AM , TLE2071M , TLE2072 , TLE2072A , TLE2072AM , TLE2072M , TLE2074 , TLE2074A , TLE2074AM , TLE2074M

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. TLE207X Available Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Recommended Operating Conditions
    3. 6.3  TLE2071C Electrical Characteristics
    4. 6.4  TLE2071C Operating Characteristics
    5. 6.5  TLE2071C Electrical Characteristics
    6. 6.6  TLE2071C Operating Characteristics
    7. 6.7  TLE2071I Electrical Characteristics
    8. 6.8  TLE2071I Operating Characteristics
    9. 6.9  TLE2071I Electrical Characteristics
    10. 6.10 TLE2071I Operating Characteristics
    11. 6.11 TLE2071M Electrical Characteristics
    12. 6.12 TLE2071M Operating Characteristics
    13. 6.13 TLE2071M Electrical Characteristics
    14. 6.14 TLE2071M Operating Characteristics
    15. 6.15 TLE2072C Electrical Characteristics
    16. 6.16 TLE2072C Operating Characteristics
    17. 6.17 TLE2072C Electrical Characteristics
    18. 6.18 TLE2072C Operating Characteristics 15V
    19. 6.19 TLE2072I Electrical Characteristics
    20. 6.20 TLE2072I Operating Characteristics
    21. 6.21 TLE2072I Electrical Characteristics
    22. 6.22 TLE2072I Operating Characteristics
    23. 6.23 TLE2072M Electrical Characteristics
    24. 6.24 TLE2072M Operating Characteristics 5V
    25. 6.25 TLE2072M Electrical Characteristics
    26. 6.26 TLE2072M Operating Characteristics
    27. 6.27 TLE2074C Electrical Characteristics
    28. 6.28 TLE2074C Operating Characteristics
    29. 6.29 TLE2074C Electrical Characteristics
    30. 6.30 TLE2074C Operating Characteristics
    31. 6.31 TLE2074I Electrical Characteristics
    32. 6.32 TLE2074I Operating Characteristics
    33. 6.33 TLE2074I Electrical Characteristics
    34. 6.34 TLE2074I Operating Characteristics
    35. 6.35 TLE2074M Electrical Characteristics
    36. 6.36 TLE2074M Operating Characteristics
    37. 6.37 TLE2074M Electrical Characteristics
    38. 6.38 TLE2074M Operating Characteristics
    39. 6.39 Typical Characteristics
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Input Characteristics
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MIN MAX UNIT
VCC+ Supply voltage VS = (V+) – (V–) 0 38 V
VID Differential input voltage range(2) VS + 0.2
VI Common-Mode Voltage Input Range (V–) – 0.5V, (V+) + 0.5V
II Input current (each input) ± 1 mA
IO Output current (each output) Continuous mA
Duration of short-circuit current at (or below) 25°C(3) Unlimited
θJA Package thermal impedance(4)(5) D package 97.1 °C/W
DW package 57.3
N package 79.7
P package 84.6
θJC Package thermal impedance(4)(5) FK package 5.6 °C/W
J package 15.1
JG package 14.5
U package 14.7
W package 10
TA Operating free-air temperature range C suffix 0 70 °C/W
I suffix −40 85
M suffix −55 125
Tstg Storage temperature −65 150 °C
Case temperature for 60 seconds FK package 260 °C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: DW or N package 260 °C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: J, JG, U, or W package 300 °C
Stresses beyond those listed under absolute maximum ratings can cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.
Differential voltages are at the non-inverting input with respect to the inverting input.
The output can be shorted to either supply. Temperatures and/or supply voltages must be limited to confirm that the maximum dissipation rate is not exceeded.
Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allow able ambient temperature is PD = (TJ(max)− TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
The package thermal impedance is calculated in accordance with JESD 51-7 (plastic) or MIL-STD-883 Method 1012 (ceramic).