SLVAE51A November   2018  – October 2020 LM7310 , TPS2100 , TPS2101 , TPS2102 , TPS2103 , TPS2104 , TPS2105 , TPS2110 , TPS2111 , TPS2111A , TPS2112 , TPS2112A , TPS2113 , TPS2113A , TPS2114 , TPS2114A , TPS2115 , TPS2115A , TPS2120 , TPS2121 , TPS25947

 

  1.   Trademarks
  2. 1What is a Priority Power MUX?
  3. 2Control Method
    1. 2.1 Manual
    2. 2.2 Automatic
    3. 2.3 Both - Automatic + Manual Override
  4. 3Power MUX Topologies
    1. 3.1 Discrete
    2. 3.2 Semi-Integrated
    3. 3.3 Fully Integrated
  5. 4Switchover Method
    1. 4.1 Break-Before-Make vs. Diode Mode
    2. 4.2 What is Seamless Switchover?
    3. 4.3 Output Voltage Drop
    4. 4.4 Inrush Current
  6. 5Additional Protection
    1. 5.1 Overvoltage Protection
    2. 5.2 Overcurrent Protection
  7. 6Summary
  8. 7References
  9. 8Revision History

Overcurrent Protection

If a downstream circuit or fault event begins to draw excessive amounts of current, it is essential to limit that current quickly to avoid potential circuit damage or fire. This is another level of protection that can be integrated within a power mux.

TI provides power mux solutions with both overvoltage and overcurrent protection. For example, 2x TPS2660 or 2x TPS25947 are semi-integrated power MUX solutions and TPS212x is a fully-integrated power MUX which each offer this level of protection.