SLVAF95 april   2023 TPS7H5001-SP

 

  1.   Abstract
  2.   Trademarks
  3.   Description
  4.   Features
  5.   Applications
  6. 1System Overview
    1. 1.1 Block Diagram
    2. 1.2 Design Considerations
    3. 1.3 System Design Theory
      1. 1.3.1 Switching Frequency
      2. 1.3.2 Transformer
      3. 1.3.3 RCD and Diode Clamp
      4. 1.3.4 Output Diode and MOSFET
      5. 1.3.5 Output Filter and Capacitance
      6. 1.3.6 Compensation
      7. 1.3.7 Controller Passives
  7. 2Test Results
    1. 2.1 Testing and Results
      1. 2.1.1 Test Setup
      2. 2.1.2 Test Results
        1. 2.1.2.1 Efficiency
        2. 2.1.2.2 Frequency Response
        3. 2.1.2.3 Thermal Characteristics
        4. 2.1.2.4 Output Voltage Ripple
        5. 2.1.2.5 Load Step
        6. 2.1.2.6 Start-Up
        7. 2.1.2.7 Shutdown
        8. 2.1.2.8 Component Stresses
  8. 3Design Files
    1. 3.1 Schematics
    2. 3.2 Bill of Materials
    3. 3.3 Assembly Drawings
  9. 4Related Documentation

Description

The TPS7H5001-SP controller brings the 28-V input down to a 5-V output at 10 A. The main converter was tested with synchronous rectification and efficiency was compared to the same converter without the synchronous rectification. Equations to find the values needed for the passives is reviewed along with the results from the 28-V rail. Passives are meant to reflect space-grade components, but may not have perfect analogs. The main transformer uses space-grade materials.