SLVSFV5C July   2023  – July 2025 DRV8262

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
      1. 5.4.1 Transient Thermal Impedance & Current Capability
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1  Overview
    2. 6.2  Functional Block Diagram
    3. 6.3  Feature Description
      1. 6.3.1 Spread Spectrum
    4. 6.4  Device Operational Modes
      1. 6.4.1 Dual H-Bridge Mode (MODE1 = 0)
      2. 6.4.2 Single H-Bridge Mode (MODE1 = 1)
    5. 6.5  Current Sensing and Regulation
      1. 6.5.1 Current Sensing and Feedback
      2. 6.5.2 Current Regulation
        1. 6.5.2.1 Mixed Decay
        2. 6.5.2.2 Smart tune Dynamic Decay
      3. 6.5.3 Current Sensing with External Resistor
    6. 6.6  Charge Pump
    7. 6.7  Linear Voltage Regulator
    8. 6.8  VCC Voltage Supply
    9. 6.9  Logic Level, Tri-Level and Quad-Level Pin Diagrams
    10. 6.10 Protection Circuits
      1. 6.10.1 VM Undervoltage Lockout (UVLO)
      2. 6.10.2 VCP Undervoltage Lockout (CPUV)
      3. 6.10.3 Logic Supply Power on Reset (POR)
      4. 6.10.4 Overcurrent Protection (OCP)
      5. 6.10.5 Thermal Shutdown (OTSD)
      6. 6.10.6 nFAULT Output
      7. 6.10.7 Fault Condition Summary
    11. 6.11 Device Functional Modes
      1. 6.11.1 Sleep Mode
      2. 6.11.2 Operating Mode
      3. 6.11.3 nSLEEP Reset Pulse
      4. 6.11.4 Functional Modes Summary
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Driving Brushed-DC Motors
        1. 7.1.1.1 Brushed-DC Motor Driver Typical Application
        2. 7.1.1.2 Power Loss Calculations - Dual H-bridge
        3. 7.1.1.3 Power Loss Calculations - Single H-bridge
        4. 7.1.1.4 Junction Temperature Estimation
        5. 7.1.1.5 Application Performance Plots
      2. 7.1.2 Driving Stepper Motors
        1. 7.1.2.1 Stepper Driver Typical Application
        2. 7.1.2.2 Power Loss Calculations
        3. 7.1.2.3 Junction Temperature Estimation
      3. 7.1.3 Driving Thermoelectric Coolers (TEC)
    2. 7.2 Power Supply Recommendations
      1. 7.2.1 Bulk Capacitance
      2. 7.2.2 Power Supplies
    3. 7.3 Layout
      1. 7.3.1 Layout Guidelines
      2. 7.3.2 Layout Example
  9. Package Thermal Considerations
    1. 8.1 DDW Package
      1. 8.1.1 Thermal Performance
        1. 8.1.1.1 Steady-State Thermal Performance
        2. 8.1.1.2 Transient Thermal Performance
    2. 8.2 DDV Package
    3. 8.3 PCB Material Recommendation
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Power Loss Calculations - Dual H-bridge

For a H-bridge with high-side recirculation, power dissipation for each FET can be approximated as follows:

  • PHS1 = RDS(ON) × IL2
  • PLS1 = 0
  • PHS2 = [RDS(ON) × IL2 x (1-D)] + [2 x VD x IL x tD x fPWM]
  • PLS2 = [RDS(ON) × IL2 x D] + [VM x IL x tRF x fPWM]

Where,

  • RDS(ON) = ON resistance of each FET
    • For DRV8262 in dual H-bridge mode, RDS(ON) is typically 50mΩ at 25 °C, and 85mΩ at 150 °C.
  • fPWM = PWM switching frequency
  • VM = Supply voltage to the driver
  • IL = Motor RMS current
  • D = PWM duty cycle (between 0 and 1)
  • tRF = Output voltage rise/ fall time

    • For DRV8262, the rise/fall time is 110ns
  • VD = FET body diode forward bias voltage
    • For DRV8262, the voltage is 1V
  • tD = dead time
    • For DRV8262, the voltage 300ns

For estimating power dissipation for load current flow in the reverse direction, identical equations apply, with only swapping of HS1 with HS2 and LS1 with LS2.

Substituting the following values in the equations above -

  • VM = 24V
  • IL = 4A
  • RDS(ON) = 50mΩ
  • D = 0.5
  • VD = 1V
  • tD = 300ns
  • tRF = 110ns
  • fPWM = 20kHz

The losses in each FET can be calculated as follows -

PHS1 = 50mΩ × 42 = 0.8 W

PLS1 = 0

PHS2 = [50mΩ × 42 x (1-0.5)] + [2 x 1V x 4A x 300ns x 20KHz] = 0.448W

PLS2 = [ 50mΩ × 42 x 0.5] + [24 x 4A x 110ns x 20kHz] = 0.611W

Quiescent Current Loss PQ = 24V × 5mA = 0.12W

PTOT = 2 x (PHS1 + PLS1 + PHS2 + PLS2) + PQ = 2 x (0.8 + 0 + 0.448 + 0.611) + 0.12 = 3.84 W