SLVSH61C March   2025  – November 2025 TPS7H4102-SEP , TPS7H4104-SEP

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Quality Conformance Inspection
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 VIN and Power VIN Pins (VIN and PVIN)
      2. 8.3.2 Voltage Reference
      3. 8.3.3 Setting VOUTx
        1. 8.3.3.1 VOUTx with Error
        2. 8.3.3.2 Minimum Output Voltage
        3. 8.3.3.3 Maximum Output Voltage
      4. 8.3.4 Enable and EN_SEQ
        1. 8.3.4.1 ENx and External UVLO
        2. 8.3.4.2 Sequence UP/DOWN (EN_SEQ)
      5. 8.3.5 Power Good (PWRGDx)
      6. 8.3.6 Adjustable Switching Frequency, Synchronization (SYNC) and Relative Phase Shift
        1. 8.3.6.1 Internal Clock Mode
        2. 8.3.6.2 External Clock Mode and Switchover
        3. 8.3.6.3 Relative Phase Shift
      7. 8.3.7 Turn-On Behavior
        1. 8.3.7.1 Pulse Skipping During Start-up
        2. 8.3.7.2 Soft-Start (SS_TRx)
        3. 8.3.7.3 Safe Start-up Into Pre-biased Outputs
        4. 8.3.7.4 Tracking and Sequencing (SS_TRx)
      8. 8.3.8 Protection Modes
        1. 8.3.8.1 Overcurrent Protection
          1. 8.3.8.1.1 High-Side Cycle by Cycle Overcurrent Protection (IOC_HSx)
          2. 8.3.8.1.2 Low-Side Sourcing Overcurrent Protection (IOC_LS_SOURCINGx)
          3. 8.3.8.1.3 COMPx Clamp Shutdown (COMPxCLAMP)
          4. 8.3.8.1.4 Low-Side Overcurrent Sourcing and Sinking Protection
        2. 8.3.8.2 Output Overvoltage Protection (OVP)
        3. 8.3.8.3 Thermal Shutdown
      9. 8.3.9 Error Amplifier and Loop Response
        1. 8.3.9.1 Error Amplifier
        2. 8.3.9.2 Power Stage Transconductance
        3. 8.3.9.3 Slope Compensation
        4. 8.3.9.4 Frequency Compensation
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Operating Frequency
        2. 9.2.2.2 Output Inductor Selection
        3. 9.2.2.3 Output Capacitor Selection
        4. 9.2.2.4 Input Capacitor Selection
        5. 9.2.2.5 Soft-Start Capacitor Selection
        6. 9.2.2.6 Undervoltage Lockout (UVLO) Set Point
        7. 9.2.2.7 Output Voltage Feedback Resistor Selection
        8. 9.2.2.8 Slope Compensation Requirements
        9. 9.2.2.9 Compensation Component Selection
      3. 9.2.3 Application Curves
    3. 9.3 Parallel Operation
      1. 9.3.1 Input and Output Capacitance Reduction
        1. 9.3.1.1 Output Capacitance Reduction
        2. 9.3.1.2 Input Capacitance Reduction
    4. 9.4 Termination Guidelines for Unused Channels
    5. 9.5 Power Supply Recommendations
    6. 9.6 Layout
      1. 9.6.1 Layout Guidelines
      2. 9.6.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Output Inductor Selection

To calculate the value of the output inductor, use Equation 28. KLx is a coefficient that represents the amount of inductor ripple current relative to the maximum output current, IOUTx as shown in Equation 29. Since the output capacitors must have a ripple current rating greater than or equal to the inductor ripple current, choosing a high inductor ripple current impacts output capacitors selection. In general, the inductor ripple value is at the discretion of the designer depending on specific system needs. Typical values for KLx range from 10% to 50%. For low output currents, the value of KL x can be increased to minimize excessive switch (SWx) jitter and to reduce the value of the output inductor.

Equation 28. L V I N _ M A X   -   V O U T x I O U T x   ×   K L x × V O U T x V I N _ M A X   ×   f S W
Equation 29. K L x = i L x I O U T x

For this design example, use KLx = 40% and VIN_MAX = 5.5V (5V + 10%). Once the inductor value is known (or selected) the actual ripple current (ΔiLx), RMS and peak current can be calculated, using Equation 30, Equation 31 and Equation 32, respectively. The inductor design details are presented in Table 9-2.

Equation 30. i L x =   V I N _ M A X - V O U T x L x × V O U T x V I N _ M A X × f S W
Equation 31. i L _ R M S x =   I O U T x 2 + 1 12 × V O U T x × V I N _ M A X - V O U T x V I N _ M A x × L x × f S W 2
Equation 32. i L _ P E A K =   I O U T x +   i L x 2
Table 9-2 Inductor Design Calculations
VOUTx (V) CALCULATED INDUCTOR VALUE (μH) SELECTED INDUCTOR VALUE (μH) INDUCTOR RIPPLE CURRENT (A) INDUCTOR RMS CURRENT (A) INDUCTOR PEAK CURRENT (A)
0.8 1.14 1.8 0.76 3.01 3.38
1.2 1.56 1.8 1.04 3.02 3.52
1.5 1.82 1.8 1.21 3.02 3.61
1.8 2.02 2.2 1.10 3.02 3.55

The current flowing through the inductor is the inductor ripple current plus the output current. During power up, faults, or transient load conditions, the inductor current can increase above the previously calculated peak inductor current level. In transient conditions, the inductor current can increase up to the switch current limit of the device. For this reason, the most conservative approach is to specify an inductor with a saturation current rating equal to or greater than the maximum switch current limit, rather than the peak inductor current.

For the TPS7H410x the maximum value for the current limit is dominated by the IOC_LS_SOURCINGx at 7.6A. The selected inductor model, saturation current, and the RMS are shown in Table 9-2.

Table 9-3 Selected Inductor Details
INDUCTOR VALUE (μH) INDUCTOR PART NUMBER INDUCTOR ISAT RATING (A) INDUCTOR IRMS RATING (A)
1.8 XGL6030-182MEC 9.4 9.5
2.2 XGL6030-222MEC 8.7 8.5