SLYT867 June   2025 LDC5072-Q1 , MSPM0G1106 , MSPM0G1107 , MSPM0G1506 , MSPM0G1507 , MSPM0G1518 , MSPM0G1519 , MSPM0G3106 , MSPM0G3106-Q1 , MSPM0G3107 , MSPM0G3107-Q1 , MSPM0G3506 , MSPM0G3506-Q1 , MSPM0G3507 , MSPM0G3507-Q1 , MSPM0G3518 , MSPM0G3518-Q1 , MSPM0G3519 , MSPM0G3519-Q1 , TMAG5170 , TMAG6180-Q1

 

  1.   1
  2. Introduction
  3. Using a position sensor with brushless motor control
  4. Incremental and absolute encoders
  5. FOC motor-control techniques and requirements for encoders
  6. Position sensor technologies
  7. Magnetic position sensors
  8. Linear position example with a 3D Hall-effect linear sensor
  9. Rotary angle example with an AMR sensor
  10. Inductive position sensing
  11. 10Conclusion
  12. 11Additional resources

Conclusion

Selecting the most appropriate position sensor depends on motor-drive system requirements, with cost, performance, operating temperature and size the most important trade-offs to consider. Another aspect is whether to add additional diagnostics or functional safety to an industrial or automotive solution. Each motor and encoder type have their own requirements, so it’s important to choose the best sensor type for the application.