SNOSDA3H June   2020  – November 2025 TLV9020 , TLV9021 , TLV9022 , TLV9024 , TLV9030 , TLV9031 , TLV9032 , TLV9034

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1. 4.1 Pin Functions: TLV90x0 and TLV90x1 Single
    2. 4.2 Pin Functions: TLV90x2 Dual
    3. 4.3 Pin Functions: TLV90x4 Quad
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information, TLV90x0,TLV90x1
    5. 5.5  Thermal Information, TLV90x2
    6. 5.6  Thermal Information, TLV90x4
    7. 5.7  Electrical Characteristics, TLV90x0,TLV90x1
    8. 5.8  Switching Characteristics, TLV90x0,TLV90x1
    9. 5.9  Electrical Characteristics, TLV90x2
    10. 5.10 Switching Characteristics, TLV90x2
    11. 5.11 Electrical Characteristics, TLV90x4
    12. 5.12 Switching Characteristics, TLV90x4
    13. 5.13 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
    4. 6.4 Device Functional Modes
      1. 6.4.1 Outputs
        1. 6.4.1.1 TLV9022 and TLV9024 Open Drain Output
        2. 6.4.1.2 TLV9032 and TLV9034 Push-Pull Output
      2. 6.4.2 Inputs
        1. 6.4.2.1 Rail to Rail Input
        2. 6.4.2.2 Fault Tolerant Inputs
        3. 6.4.2.3 Input Protection
      3. 6.4.3 ESD Protection
      4. 6.4.4 Unused Inputs
      5. 6.4.5 Hysteresis
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Basic Comparator Definitions
        1. 7.1.1.1 Operation
        2. 7.1.1.2 Propagation Delay
        3. 7.1.1.3 Overdrive Voltage
      2. 7.1.2 Hysteresis
        1. 7.1.2.1 Inverting Comparator With Hysteresis
        2. 7.1.2.2 Non-Inverting Comparator With Hysteresis
        3. 7.1.2.3 Inverting and Non-Inverting Hysteresis Using Open-Drain Output
    2. 7.2 Typical Applications
      1. 7.2.1 Window Comparator
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Curve
      2. 7.2.2 Square-Wave Oscillator
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Application Curve
      3. 7.2.3 Adjustable Pulse Width Generator
      4. 7.2.4 Time Delay Generator
      5. 7.2.5 Logic Level Shifter
      6. 7.2.6 One-Shot Multivibrator
      7. 7.2.7 Bi-Stable Multivibrator
      8. 7.2.8 Zero Crossing Detector
      9. 7.2.9 Pulse Slicer
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

One-Shot Multivibrator

TLV9020 TLV9021 TLV9022 TLV9024 TLV9030 TLV9031 TLV9032 TLV9034 One-Shot MultivibratorFigure 7-15 One-Shot Multivibrator

A monostable multivibrator has one stable state in which the output can remain indefinitely. The circuit can be triggered externally to another quasi-stable state. A monostable multivibrator can thus be used to generate a pulse of desired width.

The desired pulse width is set by adjusting the values of C2 and R4. The resistor divider of R1 and R2 can be used to determine the magnitude of the input trigger pulse. The output changes state when V1 < V2. Diode D2 provides a rapid discharge path for capacitor C2 to reset at the end of the pulse. The diode also prevents the non-inverting input from being driven below ground.