SNOSDA3H June   2020  – November 2025 TLV9020 , TLV9021 , TLV9022 , TLV9024 , TLV9030 , TLV9031 , TLV9032 , TLV9034

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1. 4.1 Pin Functions: TLV90x0 and TLV90x1 Single
    2. 4.2 Pin Functions: TLV90x2 Dual
    3. 4.3 Pin Functions: TLV90x4 Quad
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information, TLV90x0,TLV90x1
    5. 5.5  Thermal Information, TLV90x2
    6. 5.6  Thermal Information, TLV90x4
    7. 5.7  Electrical Characteristics, TLV90x0,TLV90x1
    8. 5.8  Switching Characteristics, TLV90x0,TLV90x1
    9. 5.9  Electrical Characteristics, TLV90x2
    10. 5.10 Switching Characteristics, TLV90x2
    11. 5.11 Electrical Characteristics, TLV90x4
    12. 5.12 Switching Characteristics, TLV90x4
    13. 5.13 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
    4. 6.4 Device Functional Modes
      1. 6.4.1 Outputs
        1. 6.4.1.1 TLV9022 and TLV9024 Open Drain Output
        2. 6.4.1.2 TLV9032 and TLV9034 Push-Pull Output
      2. 6.4.2 Inputs
        1. 6.4.2.1 Rail to Rail Input
        2. 6.4.2.2 Fault Tolerant Inputs
        3. 6.4.2.3 Input Protection
      3. 6.4.3 ESD Protection
      4. 6.4.4 Unused Inputs
      5. 6.4.5 Hysteresis
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Basic Comparator Definitions
        1. 7.1.1.1 Operation
        2. 7.1.1.2 Propagation Delay
        3. 7.1.1.3 Overdrive Voltage
      2. 7.1.2 Hysteresis
        1. 7.1.2.1 Inverting Comparator With Hysteresis
        2. 7.1.2.2 Non-Inverting Comparator With Hysteresis
        3. 7.1.2.3 Inverting and Non-Inverting Hysteresis Using Open-Drain Output
    2. 7.2 Typical Applications
      1. 7.2.1 Window Comparator
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
        3. 7.2.1.3 Application Curve
      2. 7.2.2 Square-Wave Oscillator
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
        3. 7.2.2.3 Application Curve
      3. 7.2.3 Adjustable Pulse Width Generator
      4. 7.2.4 Time Delay Generator
      5. 7.2.5 Logic Level Shifter
      6. 7.2.6 One-Shot Multivibrator
      7. 7.2.7 Bi-Stable Multivibrator
      8. 7.2.8 Zero Crossing Detector
      9. 7.2.9 Pulse Slicer
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
  9. Device and Documentation Support
    1. 8.1 Documentation Support
      1. 8.1.1 Related Documentation
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Pulse Slicer

A Pulse Slicer is a variation of the Zero Crossing Detector and is used to detect the zero crossings on an input signal with a varying baseline level. This circuit works best with symmetrical waveforms. The RC network of R1 and C1 establishes an mean reference voltage VREF, which tracks the mean amplitude of the VIN signal. The noninverting input is directly connected to VREF through R2. R2 and R3 are used to produce hysteresis to keep transitions free of spurious toggles. The time constant is a tradeoff between long-term symmetry and response time to changes in amplitude.

When the waveform is data, TI recommends that the data be encoded in NRZ (Non-Return to Zero) format to maintain proper average baseline. Asymmetrical inputs can suffer from timing distortions caused by the changing VREF average voltage.

TLV9020 TLV9021 TLV9022 TLV9024 TLV9030 TLV9031 TLV9032 TLV9034 Pulse Slicer Using
                        TLV903xFigure 7-18 Pulse Slicer Using TLV903x

For this design, follow these design requirements:

  • The RC constant value (R2 and C1) must support the targeted data rate to maintain a valid tripping threshold.
  • The hysteresis introduced with R2 and R43 helps to avoid spurious output toggles.

The TLV902x can also be used, but with the addition of a pull-up resistor on the output (not shown for clarity).

Figure 7-19 shows the results of a 9600 baud data signal riding on a varying baseline.

TLV9020 TLV9021 TLV9022 TLV9024 TLV9030 TLV9031 TLV9032 TLV9034 Pulse Slicer WaveformsFigure 7-19 Pulse Slicer Waveforms