SPRAD34B July   2023  – October 2023 MSPM0G1507

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1Introduction
  5. 2Getting Started With MSPM0 Motor Control
  6. 3Brushed-DC Motor Control
    1. 3.1 Background
    2. 3.2 Software Architecture
    3. 3.3 Block Diagrams
      1. 3.3.1 H-Bridge Motor Driver
      2. 3.3.2 H-Bridge Gate Driver
    4. 3.4 Hardware Support
    5. 3.5 Software Support
    6. 3.6 Evaluating Brushed-DC with MSP Motor Control SDK
  7. 4Stepper Motor Control
    1. 4.1 Background
    2. 4.2 Software Architecture
    3. 4.3 Block Diagrams
    4. 4.4 Hardware Support
    5. 4.5 Software Support
    6. 4.6 Evaluating Stepper With MSP Motor Control SDK
  8. 5BLDC Sensored Trap Control
    1. 5.1 Background
    2. 5.2 Software Architecture
    3. 5.3 Block Diagrams
    4. 5.4 Hardware Support
    5. 5.5 Software Support
    6. 5.6 Evaluating Sensored Trap with MSP Motor Control
  9. 63-Phase Sensorless FOC Control
    1. 6.1 Background
    2. 6.2 Software Architecture
    3. 6.3 Block Diagrams
      1. 6.3.1 MSPM0Gx10x and Gate Driver with Analog/MOSFET Integration
      2. 6.3.2 MSPM0Gx50x Analog Integration and Gate Driver
    4. 6.4 Hardware Support
    5. 6.5 Software Support
    6. 6.6 Evaluating Sensorless FOC with MSP Motor Control
    7. 6.7 Sensorless FOC Performance
  10. 7References
  11.   Revision History

Stepper Motor Control

The main features of the MSPM0 Stepper Motor Control designs include:

  • 4-PWM stepper control up to 100 kHz using full- or half-stepping, or 1-PWM stepper control up to 500 kHz using 1/256 microstepping
  • Spin or step motor in open loop based on selected step size
  • Voltage reference for current limiting
  • SPI interface to configure driver settings and diagnose driver faults (SPI devices only)
  • Fault detection using fault pin