SSZT830 january 2018 ISO5452 , ISO5852S , UCC21220 , UCC21521 , UCC5390
Other Parts Discussed in Post: ISO5852S UCC5390 UCC21220 UCC21521 ISO5452
With urbanization growing in every corner of the globe, the answer to this growth is smart cities. Building a smart city involves a paradigm shift in infrastructure, with sophisticated networks and controls for communications among key modules such as, community-based power grids, utilities, and weather monitoring.
The backbone for infrastructure networking is sensor technology. A sensor is a device, module or subsystem that detects events or changes in its environment and sends that information to other electronics such as a computer processor. You can imagine this sensor being connected to the actual system that could be an inverter from a rooftop solar that is part of a community-based grid; a heating, ventilation and air conditioning (HVAC) system; or an automation system for home or commercial buildings, automated laundromats or car-washing systems.
What is common among these systems? All these systems operate at high voltages and draw or supply a lot of current. The sensor data has to transmit to the controller side (the device translating the measurement for human readout). This controller could also be a human machine interface (HMI) such as a touch screen for monitoring the energy output of a solar inverter in your home. Therefore, any of the high voltages on the sensor side – if exposed to the controller side – could not only damage the controller, but also potentially act as a hazard to humans. The same risk is possible in a factory environment that heavily involves automation, process control and testing, or in medical equipment that comes into direct contact with patients.
The medium of the barrier is different for each of the three technologies, but the end goal is the same. Optical isolation is the oldest among the three technologies and is simple to use. Optical technology is light-emitting diode (LED)-based, where the light transmitted by the diode transmits data. However, optical isolation suffers from low speeds (as it takes time for the LED to turn on), high power consumption, and performance degradation over its lifetime. It is difficult to reduce the size of the isolated devices (isolators, isolated gate drivers) due to the physical size limitation of the LED
In magnetic and capacitive isolation, data transmits through the barrier digitally. Magnetic isolation, also called inductive isolation, pulses current through the isolation barrier at speeds as high as 100Mbps. However, the power consumption increases along with the data rate. Magnetic isolation is also sensitive to electromagnetic interference, and high magnetic fields are strong and prevalent in environments such as HVAC systems and factory automation that involves motors.
TI offers several isolated gate drivers for smart city infrastructure design, including the ISO5452, ISO5852S, UCC21521, UCC21220 and UCC5390. To browse all of our isolated gate driver products, please click here.