TIDUFE6A September   2025  – December 2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Control Pilot
        1. 2.2.1.1 Signals
        2. 2.2.1.2 Duty Cycle
        3. 2.2.1.3 Signal State
        4. 2.2.1.4 Control Pilot Signal Circuit
        5. 2.2.1.5 EV Simulation Circuit
      2. 2.2.2 HomePlug Green PHY - Powerline Communication
        1. 2.2.2.1 HomePlug Green PHY Circuit
      3. 2.2.3 Proximity Pilot
        1. 2.2.3.1 Type 1 and NACS
        2. 2.2.3.2 Type 2
        3. 2.2.3.3 Proximity Detection Circuit
      4. 2.2.4 GB/T – ChaoJi
        1. 2.2.4.1 Signals
        2. 2.2.4.2 GB/T
        3. 2.2.4.3 ChaoJi
        4. 2.2.4.4 Schematics
        5. 2.2.4.5 EV Simulation
      5. 2.2.5 CHAdeMO
        1. 2.2.5.1 Signals
        2. 2.2.5.2 Standard
        3. 2.2.5.3 Schematics
          1. 2.2.5.3.1 High-Side Switch (CS1)
          2. 2.2.5.3.2 Low-Side Switch (CS2)
          3. 2.2.5.3.3 Proximity Detection
          4. 2.2.5.3.4 Vehicle Charge Permission
        4. 2.2.5.4 EV Simulation
      6. 2.2.6 Pluck Lock
        1. 2.2.6.1 Signals
        2. 2.2.6.2 Schematics
        3. 2.2.6.3 Motor Driver
        4. 2.2.6.4 Solenoid Driver
      7. 2.2.7 Temperature Sensing
        1. 2.2.7.1 Signals
        2. 2.2.7.2 Schematics
        3. 2.2.7.3 Calculation
      8. 2.2.8 Connectivity
        1. 2.2.8.1 RS-485
        2. 2.2.8.2 RS-232
        3. 2.2.8.3 CAN
      9. 2.2.9 General Purpose Input/Output
        1. 2.2.9.1 Digital Input
        2. 2.2.9.2 Analog Input
        3. 2.2.9.3 Digital Output
    3. 2.3 Highlighted Products
      1. 2.3.1 MSPM0G3507
      2. 2.3.2 AM62L
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
    2. 3.2 Test Setup
      1. 3.2.1 Power Supply Options
      2. 3.2.2 XDS110 Debug Probe
        1. 3.2.2.1 Application (or Back Channel) UART
        2. 3.2.2.2 Using an External Debug Probe Instead of the Onboard XDS110
      3. 3.2.3 Connecting to the AM62L-EVM
      4. 3.2.4 Connector, Pin Header, and Jumper Settings
    3. 3.3 Test Results
      1. 3.3.1 Control Pilot
        1. 3.3.1.1 TLV1805 Output Rise and Fall Time
        2. 3.3.1.2 Control Pilot Signal Voltage Accuracy in Different States
      2. 3.3.2 GB/T ChaoJi
        1. 3.3.2.1 GB/T Signal Voltage Accuracy
        2. 3.3.2.2 ChaoJi Signal Voltage Accuracy in Different States
      3. 3.3.3 Digital and Analog Input
        1. 3.3.3.1 Digital In
        2. 3.3.3.2 Analog In
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author
  12. 6Revision History

EV Simulation Circuit

The TIDA-010939 design includes circuitry to simulate the behavior of an electric vehicle. Jumper J5 selects configuration: shorting pins 1–2 sets the board to EVSE mode, connecting the control pilot signal generator to the CP output at screw terminal J4. Shorting pins 2–3 sets the circuit to EV mode, connecting the EV simulation circuitry to the CP output.

TIDA-010939 CCS EV Simulation
                    Circuit Figure 2-4 CCS EV Simulation Circuit

In EV mode, SW1 simulates connecting the vehicle by loading the CP line with a 2.74kΩ resistor, corresponding to State B – EV connected. To transition to State C – EV charging, the microcontroller output MSP_GPIO_EV_Charge must go high, connecting resistor R69 (1.3kΩ) in parallel to the CP line.

Diode D17 passes only the positive half of the PWM signal through, indicating to the EVSE that a valid load exists.