TIDUFE6A September   2025  – December 2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Control Pilot
        1. 2.2.1.1 Signals
        2. 2.2.1.2 Duty Cycle
        3. 2.2.1.3 Signal State
        4. 2.2.1.4 Control Pilot Signal Circuit
        5. 2.2.1.5 EV Simulation Circuit
      2. 2.2.2 HomePlug Green PHY - Powerline Communication
        1. 2.2.2.1 HomePlug Green PHY Circuit
      3. 2.2.3 Proximity Pilot
        1. 2.2.3.1 Type 1 and NACS
        2. 2.2.3.2 Type 2
        3. 2.2.3.3 Proximity Detection Circuit
      4. 2.2.4 GB/T – ChaoJi
        1. 2.2.4.1 Signals
        2. 2.2.4.2 GB/T
        3. 2.2.4.3 ChaoJi
        4. 2.2.4.4 Schematics
        5. 2.2.4.5 EV Simulation
      5. 2.2.5 CHAdeMO
        1. 2.2.5.1 Signals
        2. 2.2.5.2 Standard
        3. 2.2.5.3 Schematics
          1. 2.2.5.3.1 High-Side Switch (CS1)
          2. 2.2.5.3.2 Low-Side Switch (CS2)
          3. 2.2.5.3.3 Proximity Detection
          4. 2.2.5.3.4 Vehicle Charge Permission
        4. 2.2.5.4 EV Simulation
      6. 2.2.6 Pluck Lock
        1. 2.2.6.1 Signals
        2. 2.2.6.2 Schematics
        3. 2.2.6.3 Motor Driver
        4. 2.2.6.4 Solenoid Driver
      7. 2.2.7 Temperature Sensing
        1. 2.2.7.1 Signals
        2. 2.2.7.2 Schematics
        3. 2.2.7.3 Calculation
      8. 2.2.8 Connectivity
        1. 2.2.8.1 RS-485
        2. 2.2.8.2 RS-232
        3. 2.2.8.3 CAN
      9. 2.2.9 General Purpose Input/Output
        1. 2.2.9.1 Digital Input
        2. 2.2.9.2 Analog Input
        3. 2.2.9.3 Digital Output
    3. 2.3 Highlighted Products
      1. 2.3.1 MSPM0G3507
      2. 2.3.2 AM62L
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
    2. 3.2 Test Setup
      1. 3.2.1 Power Supply Options
      2. 3.2.2 XDS110 Debug Probe
        1. 3.2.2.1 Application (or Back Channel) UART
        2. 3.2.2.2 Using an External Debug Probe Instead of the Onboard XDS110
      3. 3.2.3 Connecting to the AM62L-EVM
      4. 3.2.4 Connector, Pin Header, and Jumper Settings
    3. 3.3 Test Results
      1. 3.3.1 Control Pilot
        1. 3.3.1.1 TLV1805 Output Rise and Fall Time
        2. 3.3.1.2 Control Pilot Signal Voltage Accuracy in Different States
      2. 3.3.2 GB/T ChaoJi
        1. 3.3.2.1 GB/T Signal Voltage Accuracy
        2. 3.3.2.2 ChaoJi Signal Voltage Accuracy in Different States
      3. 3.3.3 Digital and Analog Input
        1. 3.3.3.1 Digital In
        2. 3.3.3.2 Analog In
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author
  12. 6Revision History

RS-232

To properly interface with the RS-232 standard, a voltage translation system is required to convert between the 3.3V domain on the board and from the 12V on the port. To facilitate the translation, the design uses a TRSF3221E device. The TRSF3221E device is capable of driving the higher voltage signals on the RS-232 port from only the 3.3V DVCC through a charge pump system. The TRSF3221E consists of a line driver, a line receiver, and a dual charge-pump circuit with ±15kV IEC ESD protection pin to pin (serial-port connection pins, including GND). The charge pump and four small external capacitors allow operation from a single 3V to 5.5V supply. The TRSF3221E operates at data signaling rates up to 1Mbit/s and a driver output slew rate of 24V/μs to 150V/μs.

TIDA-010939 RS-232 Circuit Figure 2-23 RS-232 Circuit