TIDUFE6A September   2025  – December 2025

 

  1.   1
  2.   Description
  3.   Resources
  4.   Features
  5.   Applications
  6.   6
  7. 1System Description
    1. 1.1 Key System Specifications
  8. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Control Pilot
        1. 2.2.1.1 Signals
        2. 2.2.1.2 Duty Cycle
        3. 2.2.1.3 Signal State
        4. 2.2.1.4 Control Pilot Signal Circuit
        5. 2.2.1.5 EV Simulation Circuit
      2. 2.2.2 HomePlug Green PHY - Powerline Communication
        1. 2.2.2.1 HomePlug Green PHY Circuit
      3. 2.2.3 Proximity Pilot
        1. 2.2.3.1 Type 1 and NACS
        2. 2.2.3.2 Type 2
        3. 2.2.3.3 Proximity Detection Circuit
      4. 2.2.4 GB/T – ChaoJi
        1. 2.2.4.1 Signals
        2. 2.2.4.2 GB/T
        3. 2.2.4.3 ChaoJi
        4. 2.2.4.4 Schematics
        5. 2.2.4.5 EV Simulation
      5. 2.2.5 CHAdeMO
        1. 2.2.5.1 Signals
        2. 2.2.5.2 Standard
        3. 2.2.5.3 Schematics
          1. 2.2.5.3.1 High-Side Switch (CS1)
          2. 2.2.5.3.2 Low-Side Switch (CS2)
          3. 2.2.5.3.3 Proximity Detection
          4. 2.2.5.3.4 Vehicle Charge Permission
        4. 2.2.5.4 EV Simulation
      6. 2.2.6 Pluck Lock
        1. 2.2.6.1 Signals
        2. 2.2.6.2 Schematics
        3. 2.2.6.3 Motor Driver
        4. 2.2.6.4 Solenoid Driver
      7. 2.2.7 Temperature Sensing
        1. 2.2.7.1 Signals
        2. 2.2.7.2 Schematics
        3. 2.2.7.3 Calculation
      8. 2.2.8 Connectivity
        1. 2.2.8.1 RS-485
        2. 2.2.8.2 RS-232
        3. 2.2.8.3 CAN
      9. 2.2.9 General Purpose Input/Output
        1. 2.2.9.1 Digital Input
        2. 2.2.9.2 Analog Input
        3. 2.2.9.3 Digital Output
    3. 2.3 Highlighted Products
      1. 2.3.1 MSPM0G3507
      2. 2.3.2 AM62L
  9. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Required Hardware and Software
    2. 3.2 Test Setup
      1. 3.2.1 Power Supply Options
      2. 3.2.2 XDS110 Debug Probe
        1. 3.2.2.1 Application (or Back Channel) UART
        2. 3.2.2.2 Using an External Debug Probe Instead of the Onboard XDS110
      3. 3.2.3 Connecting to the AM62L-EVM
      4. 3.2.4 Connector, Pin Header, and Jumper Settings
    3. 3.3 Test Results
      1. 3.3.1 Control Pilot
        1. 3.3.1.1 TLV1805 Output Rise and Fall Time
        2. 3.3.1.2 Control Pilot Signal Voltage Accuracy in Different States
      2. 3.3.2 GB/T ChaoJi
        1. 3.3.2.1 GB/T Signal Voltage Accuracy
        2. 3.3.2.2 ChaoJi Signal Voltage Accuracy in Different States
      3. 3.3.3 Digital and Analog Input
        1. 3.3.3.1 Digital In
        2. 3.3.3.2 Analog In
  10. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Tools and Software
    3. 4.3 Documentation Support
    4. 4.4 Support Resources
    5. 4.5 Trademarks
  11. 5About the Author
  12. 6Revision History

Digital Input

TIDA-010939 General Purpose Inputs Figure 2-25 General Purpose Inputs

The digital input connects a safety switch, monitors relay feedback signals, or reads other logic-level states. The input signal first passes through a 10kΩ series resistor that limits the current, followed by a Zener diode that clamps the voltage to 5.1V. A filter capacitor connects parallel to the Zener diode to suppress transients caused by the Zener diode switching behavior.

The protected signal then feeds into a Schmitt-trigger buffer, the SN74LVC1G17. The buffer accepts input voltages up to 5.5V, even when powered from a lower supply voltage. In this configuration, the circuit can safely accept logic inputs up to 24V. The SN74LVC1G17 hysteresis characteristics, with a positive-going threshold of approximately 1.8V and a negative-going threshold of 1.3V, prevent false triggering caused by noisy or slow-changing signals.