Product details

Number of series cells 1 Charge current (Max) (A) 5 Operating Vin (Max) (V) 14 Cell chemistry Li-Ion/Li-Polymer Battery charge voltage (Min) (V) 3.84 Battery charge voltage (Max) (V) 4.6 Absolute Vin (safety rating) (Max) ((V)) 22 Control interface I2C Features BAT temp thermistor monitoring (hot/cold profile), IC thermal regulation, ICO (Input Current Optimization), IINDPM (Input current limit), Input OVP, Integrated ADC, Power Path, USB D+/D-/BC1.2 integrated, USB OTG integrated Operating Vin (Min) (V) 3.9 Rating Catalog
Number of series cells 1 Charge current (Max) (A) 5 Operating Vin (Max) (V) 14 Cell chemistry Li-Ion/Li-Polymer Battery charge voltage (Min) (V) 3.84 Battery charge voltage (Max) (V) 4.6 Absolute Vin (safety rating) (Max) ((V)) 22 Control interface I2C Features BAT temp thermistor monitoring (hot/cold profile), IC thermal regulation, ICO (Input Current Optimization), IINDPM (Input current limit), Input OVP, Integrated ADC, Power Path, USB D+/D-/BC1.2 integrated, USB OTG integrated Operating Vin (Min) (V) 3.9 Rating Catalog
WQFN (RTW) 24 16 mm² 4 x 4
  • High Efficiency 1.5-MHz Switch Mode Buck Charge
    • 93% Charge Efficiency at 2 A and 91% Charge Efficiency at 3 A Charge Current
    • Optimize for High Voltage Input (9 V / 12 V)
    • Low Power PFM mode for Light Load Operations
  • Boost Mode Operation with Adjustable Output from 4.5 V to 5.5 V
    • Selectable 500-KHz / 1.5-MHz Boost Converter with up-to 3.1 A Output
    • 93% Boost Efficiency at 5 V at 1 A Output
    • Support down-to 2.5V Battery
    • Support PWM only or PFM/PWM control for Light Load Efficiency
  • Integrated Control to Switch Between Charge and Boost Mode
  • Single Input to Support USB Input and Adjustable High Voltage Adapters
    • Support 3.9-V to 14-V Input Voltage Range
    • Input Current Limit (100 mA to 3.25 A with 50-mA resolution) to Support USB2.0, USB3.0 standard and High Voltage Adapters
    • Maximum Power Tracking by Input Voltage Limit up-to 14V for Wide Range of Adapters
    • Auto Detect USB SDP, CDP, DCP, and Non-standard Adapters
  • Input Current Optimizer (ICO) to Maximize Input Power without Overloading Adapters
  • Resistance Compensation (IRCOMP) from Charger Output to Cell Terminal
  • Highest Battery Discharge Efficiency with 11-mΩ Battery Discharge MOSFET up to 9 A
  • Integrated ADC for System Monitor
    (Voltage, Temperature, Charge Current)
  • BATFET Control to Support Ship Mode, Wake Up, and Full System Reset
  • Flexible Autonomous and I2C Mode for Optimal System Performance
  • High Integration includes all MOSFETs, Current Sensing and Loop Compensation
  • 12-µA Low Battery Leakage Current to Support Ship Mode
  • High Accuracy
    • ±0.5% Charge Voltage Regulation
    • ±5% Charge Current Regulation
    • ±7.5% Input Current Regulation
  • Safety
    • Battery Temperature Sensing for Charge and Boost Mode
    • Thermal Regulation and Thermal Shutdown
  • Create a Custom Design Using the bq25895M With the WEBENCH® Power Designer
  • High Efficiency 1.5-MHz Switch Mode Buck Charge
    • 93% Charge Efficiency at 2 A and 91% Charge Efficiency at 3 A Charge Current
    • Optimize for High Voltage Input (9 V / 12 V)
    • Low Power PFM mode for Light Load Operations
  • Boost Mode Operation with Adjustable Output from 4.5 V to 5.5 V
    • Selectable 500-KHz / 1.5-MHz Boost Converter with up-to 3.1 A Output
    • 93% Boost Efficiency at 5 V at 1 A Output
    • Support down-to 2.5V Battery
    • Support PWM only or PFM/PWM control for Light Load Efficiency
  • Integrated Control to Switch Between Charge and Boost Mode
  • Single Input to Support USB Input and Adjustable High Voltage Adapters
    • Support 3.9-V to 14-V Input Voltage Range
    • Input Current Limit (100 mA to 3.25 A with 50-mA resolution) to Support USB2.0, USB3.0 standard and High Voltage Adapters
    • Maximum Power Tracking by Input Voltage Limit up-to 14V for Wide Range of Adapters
    • Auto Detect USB SDP, CDP, DCP, and Non-standard Adapters
  • Input Current Optimizer (ICO) to Maximize Input Power without Overloading Adapters
  • Resistance Compensation (IRCOMP) from Charger Output to Cell Terminal
  • Highest Battery Discharge Efficiency with 11-mΩ Battery Discharge MOSFET up to 9 A
  • Integrated ADC for System Monitor
    (Voltage, Temperature, Charge Current)
  • BATFET Control to Support Ship Mode, Wake Up, and Full System Reset
  • Flexible Autonomous and I2C Mode for Optimal System Performance
  • High Integration includes all MOSFETs, Current Sensing and Loop Compensation
  • 12-µA Low Battery Leakage Current to Support Ship Mode
  • High Accuracy
    • ±0.5% Charge Voltage Regulation
    • ±5% Charge Current Regulation
    • ±7.5% Input Current Regulation
  • Safety
    • Battery Temperature Sensing for Charge and Boost Mode
    • Thermal Regulation and Thermal Shutdown
  • Create a Custom Design Using the bq25895M With the WEBENCH® Power Designer

The bq25895M is a highly-integrated 5-A switch-mode battery charge management and system power path management device for single cell Li-Ion and Li-polymer battery. The devices support high input voltage fast charging. The low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time and extends battery life during discharging phase. The I2C Serial interface with charging and system settings makes the device a truly flexible solution.

The bq25895M is a highly-integrated 5-A switch-mode battery charge management and system power path management device for single cell Li-Ion and Li-polymer battery. It features fast charging with high input voltage support for a wide range of smartphone, tablet and portable devices. Its low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time and extends battery life during discharging phase. It also integrates Input Current Optimizer (ICO) and Resistance Compensation (IRCOMP) to deliver maximum charging power to battery. The solution is highly integrated with input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2), low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4) between system and battery. It also integrates the bootstrap diode for the high-side gate drive and battery monitor for simplified system design. The I2C serial interface with charging and system settings makes the device a truly flexible solution

The device supports a wide range of input sources, including standard USB host port, USB charging port, and USB compliant adjustable high voltage adapter. To support fast charging using adjustable high voltage adapter, the bq25895M provides support MaxChargeTM handshake using D+/D- pins and DSEL pin for USB switch control. In addition, the device includes interface to support adjustable high voltage adapter using input current pulse protocol. To set the default input current limit, device uses the built-in USB interface. The device is compliant with USB 2.0 and USB 3.0 power spec with input current and voltage regulation. In addition, the Input Current Optimizer (ICO) supports the detection of maximum power point detection of the input source without overload. The device supports battery boost operation by supplying adjustable 4.5V-5.5V on PMID pin with up to 3.1A with integrated charge and boost mode detection

The power path management regulates the system slightly above battery voltage but does not drop below 3.5V minimum system voltage (programmable). With this feature, the system maintains operation even when the battery is completely depleted or removed. When the input current limit or voltage limit is reached, the power path management automatically reduces the charge current to zero. As the system load continues to increase, the power path discharges the battery until the system power requirement is met. This Supplemental Mode operation prevents overloading the input source.

The device initiates and completes a charging cycle without software control. It automatically detects the battery voltage and charges the battery in three phases: pre-conditioning, constant current and constant voltage. At the end of the charging cycle, the charger automatically terminates when the charge current is below a preset limit in the constant voltage phase. When the full battery falls below the recharge threshold, the charger will automatically start another charging cycle.

The charger provides various safety features for battery charging and system operations, including battery temperature negative thermistor monitoring, charging safety timer and overvoltage/overcurrent protections. The thermal regulation reduces charge current when the junction temperature exceeds 120°C (programmable). The STAT output reports the charging status and any fault conditions. The INT immediately notifies host when fault occurs.

The device also provides a 7-bit analog-to-digital converter (ADC) for monitoring charge current and input/battery/system (VBUS, BAT, SYS, TS) voltages. The QON pin provides BATFET enable/reset control to exit low power ship mode or full system reset function.

The device family is available in 24-pin, 4 x 4 mm2 x 0.75 mm thin WQFN package.

The bq25895M is a highly-integrated 5-A switch-mode battery charge management and system power path management device for single cell Li-Ion and Li-polymer battery. The devices support high input voltage fast charging. The low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time and extends battery life during discharging phase. The I2C Serial interface with charging and system settings makes the device a truly flexible solution.

The bq25895M is a highly-integrated 5-A switch-mode battery charge management and system power path management device for single cell Li-Ion and Li-polymer battery. It features fast charging with high input voltage support for a wide range of smartphone, tablet and portable devices. Its low impedance power path optimizes switch-mode operation efficiency, reduces battery charging time and extends battery life during discharging phase. It also integrates Input Current Optimizer (ICO) and Resistance Compensation (IRCOMP) to deliver maximum charging power to battery. The solution is highly integrated with input reverse-blocking FET (RBFET, Q1), high-side switching FET (HSFET, Q2), low-side switching FET (LSFET, Q3), and battery FET (BATFET, Q4) between system and battery. It also integrates the bootstrap diode for the high-side gate drive and battery monitor for simplified system design. The I2C serial interface with charging and system settings makes the device a truly flexible solution

The device supports a wide range of input sources, including standard USB host port, USB charging port, and USB compliant adjustable high voltage adapter. To support fast charging using adjustable high voltage adapter, the bq25895M provides support MaxChargeTM handshake using D+/D- pins and DSEL pin for USB switch control. In addition, the device includes interface to support adjustable high voltage adapter using input current pulse protocol. To set the default input current limit, device uses the built-in USB interface. The device is compliant with USB 2.0 and USB 3.0 power spec with input current and voltage regulation. In addition, the Input Current Optimizer (ICO) supports the detection of maximum power point detection of the input source without overload. The device supports battery boost operation by supplying adjustable 4.5V-5.5V on PMID pin with up to 3.1A with integrated charge and boost mode detection

The power path management regulates the system slightly above battery voltage but does not drop below 3.5V minimum system voltage (programmable). With this feature, the system maintains operation even when the battery is completely depleted or removed. When the input current limit or voltage limit is reached, the power path management automatically reduces the charge current to zero. As the system load continues to increase, the power path discharges the battery until the system power requirement is met. This Supplemental Mode operation prevents overloading the input source.

The device initiates and completes a charging cycle without software control. It automatically detects the battery voltage and charges the battery in three phases: pre-conditioning, constant current and constant voltage. At the end of the charging cycle, the charger automatically terminates when the charge current is below a preset limit in the constant voltage phase. When the full battery falls below the recharge threshold, the charger will automatically start another charging cycle.

The charger provides various safety features for battery charging and system operations, including battery temperature negative thermistor monitoring, charging safety timer and overvoltage/overcurrent protections. The thermal regulation reduces charge current when the junction temperature exceeds 120°C (programmable). The STAT output reports the charging status and any fault conditions. The INT immediately notifies host when fault occurs.

The device also provides a 7-bit analog-to-digital converter (ADC) for monitoring charge current and input/battery/system (VBUS, BAT, SYS, TS) voltages. The QON pin provides BATFET enable/reset control to exit low power ship mode or full system reset function.

The device family is available in 24-pin, 4 x 4 mm2 x 0.75 mm thin WQFN package.

Download

Technical documentation

Design & development

For additional terms or required resources, click any title below to view the detail page where available.

Evaluation board

BQ25895MEVM-664 — bq25895M Complete Charger Evaluation Module

The bq25895M evaluation module (EVM) is a complete charger module for evaluating the highly-integrated switch-mode battery charge management and system power path management device for 1 cell Li-Ion and Li-polymer battery in a wide range of smartphone and tablet applications.

In stock
Limit: 3
Package Pins Download
WQFN (RTW) 24 View options

Ordering & quality

Information included:
  • RoHS
  • REACH
  • Device marking
  • Lead finish/Ball material
  • MSL rating/Peak reflow
  • MTBF/FIT estimates
  • Material content
  • Qualification summary
  • Ongoing reliability monitoring

Recommended products may have parameters, evaluation modules or reference designs related to this TI product.

Support & training

TI E2E™ forums with technical support from TI engineers

Content is provided "as is" by TI and community contributors and does not constitute TI specifications. See terms of use.

If you have questions about quality, packaging or ordering TI products, see TI support. ​​​​​​​​​​​​​​

Videos