產品詳細資料

Rating Automotive Iout (typ) (A) 0.5 Vin (min) (V) 3 Vin (max) (V) 36 Features Enable, Duty-cycle control, Spread spectrum clocking, Slew-rate control, Short-circuit protection, Programmable over-current protection, Thermal shutdown Soft start Yes Operating temperature range (°C) -55 to 125 TI functional safety category Functional Safety-Capable Switching frequency (min) (kHz) 100 Switching frequency (max) (kHz) 2000 Switch current limit (typ) (A) 1.3
Rating Automotive Iout (typ) (A) 0.5 Vin (min) (V) 3 Vin (max) (V) 36 Features Enable, Duty-cycle control, Spread spectrum clocking, Slew-rate control, Short-circuit protection, Programmable over-current protection, Thermal shutdown Soft start Yes Operating temperature range (°C) -55 to 125 TI functional safety category Functional Safety-Capable Switching frequency (min) (kHz) 100 Switching frequency (max) (kHz) 2000 Switch current limit (typ) (A) 1.3
HVSSOP (DGQ) 10 14.7 mm² 3 x 4.9

SN6507-Q1 has an internal oscillator to set the switching frequency of the power stage. As the two power switches are out of phase, the oscillator frequency is twice of the actual switching frequency of each power switch. The duty cycle is fixed with 70 ns deadtime to avoid shoot-through. The duty cycle is changeable if duty cycle feature is enabled. Please refer to Section 8.3.3.

SN6507-Q1 has a wide switching frequency range from 100 kHz up to 2 MHz, which is pin-programmable through a resistor (RCLK) to GND. Below table lists the value of RCLK to achieve certain operating frequencies (fSW). The choice of switching frequency is a trade-off between power efficiency and size of capacitive and inductive components. For example, when operating at higher switching frequency, the size of the transformer and inductor is reduced, resulting in a smaller design footprint and lower cost. However, higher frequency increases switching losses and consequently degrades the overall power supply efficiency.

Figure 8-6 can also be used to estimate the programmable switching frequency, fSW, using an external resistor value, RCLK, where RCLK is in kΩ and fSW is in kHz:

If CLK pin is shorted to GND, the part switches at its default frequency, FSW. CLK pin floating is not a valid state of operation and will cause the part to stop switching until an external clock signal is present.

SN6507-Q1 has an internal oscillator to set the switching frequency of the power stage. As the two power switches are out of phase, the oscillator frequency is twice of the actual switching frequency of each power switch. The duty cycle is fixed with 70 ns deadtime to avoid shoot-through. The duty cycle is changeable if duty cycle feature is enabled. Please refer to Section 8.3.3.

SN6507-Q1 has a wide switching frequency range from 100 kHz up to 2 MHz, which is pin-programmable through a resistor (RCLK) to GND. Below table lists the value of RCLK to achieve certain operating frequencies (fSW). The choice of switching frequency is a trade-off between power efficiency and size of capacitive and inductive components. For example, when operating at higher switching frequency, the size of the transformer and inductor is reduced, resulting in a smaller design footprint and lower cost. However, higher frequency increases switching losses and consequently degrades the overall power supply efficiency.

Figure 8-6 can also be used to estimate the programmable switching frequency, fSW, using an external resistor value, RCLK, where RCLK is in kΩ and fSW is in kHz:

If CLK pin is shorted to GND, the part switches at its default frequency, FSW. CLK pin floating is not a valid state of operation and will cause the part to stop switching until an external clock signal is present.

The SN6507 -Q1 is a high voltage, high frequency push-pull transformer driver providing isolated power in a small solution size. The device comes with the push-pull topology’s benefits of simplicity, low EMI, and flux cancellation to prevent transformer saturation. Further space savings are achieved through duty-cycle control, which reduces component count for wide-input ranges, and by selecting a high switching frequency, reducing the size of the transformer.

The device integrates a controller and two 0.5-A NMOS power switches that switch out of phase. Its input operating range is programmed with precision undervoltage lockouts. The device is protected from fault conditions by over-current protection (OCP), adjustable under-voltage lockout (UVLO), over voltage lockout (OVLO), thermal shutdown (TSD), and break-before-make circuitry.

The programmable Soft Start (SS) minimizes inrush currents and provides power supply sequencing for critical power up requirements. Spread Spectrum Clocking (SSC) and pin-configurable Slew Rate Control (SRC) further reduces radiated and conducted emissions for ultra-low EMI requirements.

The SN6507 -Q1 is available in a 10-pin HVSSOP DGQ package. The device operation is characterized for a temperature range from –55°C to 125°C.

The SN6507 -Q1 is a high voltage, high frequency push-pull transformer driver providing isolated power in a small solution size. The device comes with the push-pull topology’s benefits of simplicity, low EMI, and flux cancellation to prevent transformer saturation. Further space savings are achieved through duty-cycle control, which reduces component count for wide-input ranges, and by selecting a high switching frequency, reducing the size of the transformer.

The device integrates a controller and two 0.5-A NMOS power switches that switch out of phase. Its input operating range is programmed with precision undervoltage lockouts. The device is protected from fault conditions by over-current protection (OCP), adjustable under-voltage lockout (UVLO), over voltage lockout (OVLO), thermal shutdown (TSD), and break-before-make circuitry.

The programmable Soft Start (SS) minimizes inrush currents and provides power supply sequencing for critical power up requirements. Spread Spectrum Clocking (SSC) and pin-configurable Slew Rate Control (SRC) further reduces radiated and conducted emissions for ultra-low EMI requirements.

The SN6507 -Q1 is available in a 10-pin HVSSOP DGQ package. The device operation is characterized for a temperature range from –55°C to 125°C.

下載 觀看有字幕稿的影片 影片

您可能會感興趣的類似產品

open-in-new 比較替代產品
功能相同,但引腳輸出與所比較的裝置不同
SN6501-Q1 現行 適用隔離式電源的車用低雜訊、350-mA、410-kHz 變壓器驅動器 Transformer driver with smaller package
SN6505A-Q1 現行 具緩啟動功能且適用於隔離式電源的車用低雜訊 1A 160 kHz 變壓器驅動器 Transformer driver with higher output current
SN6505B-Q1 現行 具緩啟動功能且適用於隔離式電源的車用低雜訊 1A 420 kHz 變壓器驅動器 Transformer driver with higher output current

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 3
類型 標題 日期
* Data sheet SN6507-Q1 Low-Emissions, 36-V Push-Pull Transformer Driver with Duty Cyle Control for Isolated Power Supplies datasheet PDF | HTML 2021年 2月 15日
Functional safety information SN6507-Q1 Functional Safety FIT Rate, FMD and Pin FMA PDF | HTML 2022年 5月 16日
Application note How to Reduce Emissions in Push-Pull Isolated Power Supplies (Rev. A) PDF | HTML 2021年 10月 5日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

開發板

SN6507DGQEVM — 適用於低放射、500-mA 推挽式隔離電源供應器的 SN6507 評估模組

SN6507DGQEVM 允許使用者在隔離電源供應器應用中評估 SN6507 推挽式隔離變壓器驅動器的性能和功能。

使用指南: PDF | HTML
TI.com 無法提供
模擬工具

PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
模擬工具

TINA-TI — 基於 SPICE 的類比模擬程式

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
使用指南: PDF
參考設計

PMP31182 — 採用四種不同拓撲的隔離式偏壓電源供應器參考設計

本參考設計展示四個使用不同拓撲做為 PSR 返馳、推拉式、LLC 共振和隔離式 DCDC 模組的隔離式偏壓電源供應器設計。這些拓撲可提供特定優點,但同時需有所取捨。使用四種硬體設計即可對這些拓撲進行充分比較,同時讓電力參數盡可能保持雷同。這些設計的輸入與輸出電壓為 15V,最大負載電流為 100mA。 
Test report: PDF
參考設計

PMP41078 — High-voltage to low-voltage DC-DC converter reference design with GaN HEMT

This reference design describes a 3.5kW highvoltage to low-voltage DC-DC converter with 650V Gallium nitride (GaN) high-electron mobility transistors (HEMT). Using LMG3522R030 as primary switches makes the converter work at a high switching frequency. In this design, the converter uses a smaller (...)
Test report: PDF
封裝 針腳 CAD 符號、佔位空間與 3D 模型
HVSSOP (DGQ) 10 Ultra Librarian

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 認證摘要
  • 進行中持續性的可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

建議產品可能具有與此 TI 產品相關的參數、評估模組或參考設計。

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片