SNVS252H September   2003  – November 2018 LM5007

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application Schematic
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Hysteretic Control Circuit Overview
      2. 7.3.2 High-Voltage Bias Supply Regulator
      3. 7.3.3 Overvoltage Comparator
      4. 7.3.4 On-Time Generator and Shutdown
      5. 7.3.5 Overcurrent Protection
      6. 7.3.6 N-Channel Buck Switch and Driver
      7. 7.3.7 Thermal Protection
      8. 7.3.8 Minimum Load Current
      9. 7.3.9 Ripple Configuration
    4. 7.4 Device Functional Modes
      1. 7.4.1 Standby Mode with VIN
      2. 7.4.2 Shutdown Mode
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Custom Design With Excel Quickstart Tool
        3. 8.2.2.3 Feedback Resistors, RFB1 and RFB2
        4. 8.2.2.4 Switching Frequency Selection, RON
        5. 8.2.2.5 Buck Inductor, L1
        6. 8.2.2.6 Output Capacitor, COUT
        7. 8.2.2.7 Type I Ripple Circuit, RC
        8. 8.2.2.8 Input Capacitor, CIN
        9. 8.2.2.9 Current Limit, RCL
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Custom Design With WEBENCH® Tools
      3. 11.1.3 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
        1. 11.2.1.1 PCB Layout Resources
        2. 11.2.1.2 Thermal Design Resources
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

On-Time Generator and Shutdown

The on-time of the LM5007 is set inversely proportional to the input voltage by an external resistor connected between VIN and RON. The RON pin is a low impedance input biased at approximately 1.5 V. Thus, the current through the resistor and into the RON pin is approximately proportional to VIN and used internally to control the on-timer. This scheme of input voltage feedforward hysteretic operation achieves nearly constant switching frequency over varying line and load conditions. Equation 4 specifies the on-time equation for the LM5007.

Equation 4. LM5007 q_ton_nvs252.gif

The RON pin of the LM5007 also provides a shutdown function that disables the converter and significantly decreases quiescent power dissipation. Pulling the voltage at RON below a 0.7-V logic threshold activates a low-power shutdown mode. The VIN quiescent current in this shutdown mode is approximately 100 µA internal to the LM5007 plus the current in the RON resistor.

LM5007 20078307.gifFigure 6. Shutdown Implementation