SNCS103E November   2004  – August 2018 LMH6574

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Frequency Response vs VOUT
      2.      Frequency Response vs Gain
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
    2.     Truth Table
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics ±5 V
    6. 6.6 Electrical Characteristics ±3.3 V
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Functional Block Diagram
    2. 7.2 Feature Description
      1. 7.2.1 Video Performance
      2. 7.2.2 Feedback Resistor Selection
      3. 7.2.3 Other Applications
      4. 7.2.4 Driving Capacitive Loads
      5. 7.2.5 ESD Protection
    3. 7.3 Device Functional Modes
      1. 7.3.1 SD vs EN
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Multiplexer Expansion
  9. Power Supply Recommendations
    1. 9.1 Power Dissipation
  10. 10Layout
    1. 10.1 Layout Guidelines
  11. 11Device and Documentation Support
    1. 11.1 Documentation Support
      1. 11.1.1 Related Documentation
    2. 11.2 Receiving Notification of Documentation Updates
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Video Performance

The LMH6574 has been designed to provide excellent performance with production quality video signals in a wide variety of formats such as HDTV and High Resolution VGA. Best performance will be obtained with back-terminated loads. The back termination reduces reflections from the transmission line and effectively masks transmission line and other parasitic capacitances from the amplifier output stage. The Functional Block Diagram shows a typical configuration for driving a 75Ω cable. The output buffer is configured for a gain of 2, so using back terminated loads will give a net gain of 1.