SWCS133D September   2015  – May 2019 TPS65094

PRODUCTION DATA.  

  1. Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. Revision History
  3. Device Options
    1. 3.1 OTP Comparison
  4. Pin Configuration and Functions
    1.     RSK Package 64-Pin VQFN With Thermal Pad Top View
    2.     Pin Functions
  5. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics: Total Current Consumption
    6. 5.6  Electrical Characteristics: Reference and Monitoring System
    7. 5.7  Electrical Characteristics: Buck Controllers
    8. 5.8  Electrical Characteristics: Synchronous Buck Converters
    9. 5.9  Electrical Characteristics: LDOs
    10. 5.10 Electrical Characteristics: Load Switches
    11. 5.11 Digital Signals: I2C Interface
    12. 5.12 Digital Input Signals (LDOLS_EN, SWA1_EN, THERMTRIPB, PMICEN, SLP_S3B, SLP_S4B, SLP_S0B)
    13. 5.13 Digital Output Signals (IRQB, RSMRSTB, PCH_PWROK, PROCHOT)
    14. 5.14 Timing Requirements
    15. 5.15 Switching Characteristics
    16. 5.16 Typical Characteristics
  6. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Power Good (PGOOD)
      2. 6.3.2 Register Reset Conditions
      3. 6.3.3 SMPS Voltage Regulators
        1. 6.3.3.1 Controller Overview
        2. 6.3.3.2 Converter Overview
        3. 6.3.3.3 DVS
        4. 6.3.3.4 Current Limit
      4. 6.3.4 LDOs and Load Switches
        1. 6.3.4.1 VTT LDO
        2. 6.3.4.2 LDOA1–LDOA3
        3. 6.3.4.3 Load Switches
      5. 6.3.5 Power Sequencing and VR Control
        1. 6.3.5.1 Cold Boot
        2. 6.3.5.2 Cold OFF
        3. 6.3.5.3 Connected Standby Entry and Exit
        4. 6.3.5.4 S0 to S3 Entry and Exit
        5. 6.3.5.5 S0 to S4/5 Entry and Exit
        6. 6.3.5.6 Emergency Shutdown
    4. 6.4 Device Functional Modes
      1. 6.4.1 Off Mode
      2. 6.4.2 Standby Mode
      3. 6.4.3 Active Mode
    5. 6.5 Programming
      1. 6.5.1 I2C Interface
        1. 6.5.1.1 F/S-Mode Protocol
    6. 6.6 Register Maps
      1. 6.6.1  VENDORID: PMIC Vendor ID Register (offset = 00h) [reset = 0010 0010]
        1. Table 6-12 VENDORID Register Field Descriptions
      2. 6.6.2  DEVICEID: PMIC Device and Revision ID Register (offset = 01h) [reset = OTP Dependent]
        1. Table 6-13 DEVICEID Register Field Descriptions
      3. 6.6.3  IRQ: PMIC Interrupt Register (offset = 02h) [reset = 0000 0000]
        1. Table 6-14 IRQ Register Field Descriptions
      4. 6.6.4  IRQ_MASK: PMIC Interrupt Mask Register (offset = 03h) [reset = 1111 1111]
        1. Table 6-15 IRQ_MASK Register Field Descriptions
      5. 6.6.5  PMICSTAT: PMIC Status Register (offset = 04h) [reset = 0000 0000]
        1. Table 6-16 PMICSTAT Register Field Descriptions
      6. 6.6.6  OFFONSRC: PMIC Power Transition Event Register (offset = 05h) [reset = 0000 0000]
        1. Table 6-17 OFFONSRC Register Field Descriptions
      7. 6.6.7  BUCK1CTRL: BUCK1 Control Register (offset = 20h) [reset = 0011 1000]
        1. Table 6-18 BUCK1CTRL Register Field Descriptions
      8. 6.6.8  BUCK2CTRL: BUCK2 Control Register (offset = 21h) [reset = 0000 0000]
        1. Table 6-19 BUCK2CTRL Register Field Descriptions
      9. 6.6.9  BUCK3CTRL: BUCK3 Control Register (offset = 23h) [reset = 0001 0001]
        1. Table 6-20 BUCK3CTRL Register Field Descriptions
      10. 6.6.10 BUCK4CTRL: BUCK4 Control Register (offset = 25h) [reset = OTP Dependent]
        1. Table 6-21 BUCK4CTRL Register Field Descriptions
      11. 6.6.11 BUCK5CTRL: BUCK5 Control Register (offset = 26h) [reset = OTP Dependent]
        1. Table 6-22 BUCK5CTRL Register Field Descriptions
      12. 6.6.12 BUCK6CTRL: BUCK6 Control Register (offset = 27h) [reset = 0011 1101]
        1. Table 6-23 BUCK6CTRL Register Field Descriptions
      13. 6.6.13 DISCHCNT1: Discharge Control1 Register (offset = 40h) [reset = 0101 0101]
        1. Table 6-24 DISCHCNT1 Register Field Descriptions
      14. 6.6.14 DISCHCNT2: Discharge Control2 Register (offset = 41h) [reset = 0101 0101]
        1. Table 6-25 DISCHCNT2 Register Field Descriptions
      15. 6.6.15 DISCHCNT3: Discharge Control3 Register (offset = 42h) [reset = 0000 0101]
        1. Table 6-26 DISCHCNT3 Register Field Descriptions
      16. 6.6.16 POK_DELAY: PCH_PWROK Delay Register (offset = 43h) [reset = 0000 0111]
        1. Table 6-27 POK_DELAY Register Field Descriptions
      17. 6.6.17 FORCESHUTDN: Force Emergency Shutdown Control Register (offset = 91h) [reset = 0000 0000]
        1. Table 6-28 FORCESHUTDN Register Field Descriptions
      18. 6.6.18 BUCK4VID: BUCK4 VID Register (offset = 94h) [reset = 0010 1111]
        1. Table 6-29 BUCK4VID Register Field Descriptions
      19. 6.6.19 BUCK5VID: BUCK5 VID Register (offset = 96h) [reset = 0100 1011]
        1. Table 6-30 BUCK5VID Register Field Descriptions
      20. 6.6.20 BUCK6VID: BUCK6 VID Register (offset = 98h) [reset = OTP Dependent]
        1. Table 6-31 BUCK6VID Register Field Descriptions
      21. 6.6.21 LDOA2VID: LDOA2 VID Register (offset = 9Ah) [reset = OTP Dependent]
        1. Table 6-32 LDOA2VID Register Field Descriptions
      22. 6.6.22 LDOA3VID: LDOA3 VID Register (offset = 9Bh) [reset = OTP Dependent]
        1. Table 6-33 LDOA3VID Register Field Descriptions
      23. 6.6.23 VR_CTRL1: BUCK1-3 Control Register (offset = 9Ch) [reset = OTP Dependent]
        1. Table 6-34 VR_CTRL1 Register Field Descriptions
      24. 6.6.24 VR_CTRL2: VR Enable Register (offset = 9Eh) [reset = 0000 0000]
        1. Table 6-35 VR_CTRL2 Register Field Descriptions
      25. 6.6.25 VR_CTRL3: VR Enable/Disable Register (offset = 9Fh) [reset = OTP Dependent]
        1. Table 6-36 VR_CTRL3 Register Field Descriptions
      26. 6.6.26 GPO_CTRL: GPO Control Register (offset = A1h) [reset = 0010 0000]
        1. Table 6-37 GPO_CTRL Register Field Descriptions
      27. 6.6.27 PWR_FAULT_MASK1: VR Power Fault Mask1 Register (offset = A2h) [reset = 1100 0000]
        1. Table 6-38 PWR_FAULT_MASK1 Register Field Descriptions
      28. 6.6.28 PWR_FAULT_MASK2: VR Power Fault Mask2 Register (offset = A3h) [reset = 0011 0111]
        1. Table 6-39 PWR_FAULT_MASK2 Register Field Descriptions
      29. 6.6.29 DISCHCNT4: Discharge Control4 Register (offset = ADh) [reset = 0110 0001]
        1. Table 6-40 DISCHNT4 Register Field Descriptions
      30. 6.6.30 LDOA1CTRL: LDOA1 Control Register (offset = AEh) [reset = OTP Dependent]
        1. Table 6-41 LDOA1CTRL Register Field Descriptions
      31. 6.6.31 PG_STATUS1: Power Good Status1 Register (offset = B0h) [reset = 0000 0000]
        1. Table 6-42 PG_STATUS1 Register Field Descriptions
      32. 6.6.32 PG_STATUS2: Power Good Status2 Register (offset = B1h) [reset = 0000 0000]
        1. Table 6-43 PG_STATUS2 Register Field Descriptions
        2. 6.6.32.1   PWR_FAULT_STATUS1: Power Fault Status1 Register (offset = B2h) [reset = 0000 0000]
          1. Table 6-44 PWR_FAULT_STATUS1 Register Field Descriptions
        3. 6.6.32.2   PWR_FAULT_STATUS2: Power Fault Status2 Register (offset = B3h) [reset = 0000 0000]
          1. Table 6-45 PWR_FAULT_STATUS2 Register Field Descriptions
      33. 6.6.33 TEMPHOT: Temperature Hot Status Register (offset = B5h) [reset = 0000 0000]
        1. Table 6-46 TEMPHOT Register Field Descriptions
  7. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Controller Design Procedure
          1. 7.2.2.1.1 Selecting the Output Capacitors
          2. 7.2.2.1.2 Selecting the Inductor
          3. 7.2.2.1.3 Selecting the FETs
          4. 7.2.2.1.4 Bootstrap Capacitor
          5. 7.2.2.1.5 Selecting the Input Capacitors
            1. 7.2.2.1.5.1 Setting the Current Limit
        2. 7.2.2.2 Converter Design Procedure
          1. 7.2.2.2.1 Selecting the Inductor
          2. 7.2.2.2.2 Selecting the Output Capacitors
          3. 7.2.2.2.3 Selecting the Input Capacitors
        3. 7.2.2.3 LDO Design Procedure
      3. 7.2.3 Application Curves
    3. 7.3 Specific Application for TPS650944
    4. 7.4 Do's and Don'ts
  8. Power Supply Recommendations
  9. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  10. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 Third-Party Products Disclaimer
      2. 10.1.2 Development Support
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 Receiving Notification of Documentation Updates
    4. 10.4 Community Resources
    5. 10.5 Trademarks
    6. 10.6 Electrostatic Discharge Caution
    7. 10.7 Glossary

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

F/S-Mode Protocol

The master initiates data transfer by generating a START condition. The START condition exists when a high-to-low transition occurs on the SDA line while SCL is high (see Figure 6-13). All I2C-compatible devices should recognize a START condition.

The master then generates the SCL pulses and transmits the 7-bit address and the read/write direction bit R/W on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition requires the SDA line to be stable during the entire high period of the clock pulse (see
Figure 6-14). All devices recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave device with a matching address generates an acknowledge (see Figure 6-15), by pulling the SDA line low during the entire high period of the ninth SCL cycle. Upon detecting this acknowledge, the master identifies that the communication link with a slave has been established.

The master generates further SCL cycles to either transmit data to the slave (R/W bit = 0) or receive data from the slave (R/W bit = 1). In either case, the receiver must acknowledge the data sent by the transmitter. An acknowledge signal can either be generated by the master or by the slave, depending on which one is the receiver. Any 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long as necessary.

To signal the end of the data transfer, the master generates a STOP condition by pulling the SDA line from low to high while the SCL line is high (see Figure 6-13). This STOP condition releases the bus and stops the communication link with the addressed slave. All I2C-compatible devices must recognize the STOP condition. Upon the receipt of a STOP condition, all devices detect that the bus is released, and they wait for a START condition followed by a matching address.

TPS65094 start_stop_conditions_swcs127.gifFigure 6-13 START and STOP Conditions
TPS65094 bit_transfer_swcs127.gifFigure 6-14 Bit Transfer on the I2C Bus
TPS65094 acknowledge_i2c_bus_swcs127.gifFigure 6-15 Acknowledge on the I2C Bus
TPS65094 I2c_bus_protocol_swcs127.gifFigure 6-16 I2C Bus Protocol
TPS65094 I2C_interface_write_swcs127.gifFigure 6-17 I2C Interface WRITE to TPS65094x in F/S Mode
TPS65094 I2C_interface_read_swcs127.gifFigure 6-18 I2C Interface READ from TPS65094x in F/S Mode
(Only Repeated START is Supported)