JAJSHX5F October   2010  – September 2019 ADS1118

PRODUCTION DATA.  

  1. 特長
  2. アプリケーション
  3. 概要
    1.     Device Images
      1.      K タイプの熱電対測定 内蔵温度センサによる冷接点補償
  4. 改訂履歴
  5. 概要(続き)
  6. Device Comparison Table
  7. Pin Configuration and Functions
    1.     Pin Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements: Serial Interface
    7. 8.7 Switching Characteristics: Serial Interface
    8. 8.8 Typical Characteristics
  9. Parameter Measurement Information
    1. 9.1 Noise Performance
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1 Multiplexer
      2. 10.3.2 Analog Inputs
      3. 10.3.3 Full-Scale Range (FSR) and LSB Size
      4. 10.3.4 Voltage Reference
      5. 10.3.5 Oscillator
      6. 10.3.6 Temperature Sensor
        1. 10.3.6.1 Converting from Temperature to Digital Codes
        2. 10.3.6.2 Converting from Digital Codes to Temperature
    4. 10.4 Device Functional Modes
      1. 10.4.1 Reset and Power Up
      2. 10.4.2 Operating Modes
        1. 10.4.2.1 Single-Shot Mode and Power-Down
        2. 10.4.2.2 Continuous-Conversion Mode
      3. 10.4.3 Duty Cycling for Low Power
    5. 10.5 Programming
      1. 10.5.1 Serial Interface
      2. 10.5.2 Chip Select (CS)
      3. 10.5.3 Serial Clock (SCLK)
      4. 10.5.4 Data Input (DIN)
      5. 10.5.5 Data Output and Data Ready (DOUT/DRDY)
      6. 10.5.6 Data Format
      7. 10.5.7 Data Retrieval
        1. 10.5.7.1 32-Bit Data Transmission Cycle
        2. 10.5.7.2 16-Bit Data Transmission Cycle
    6. 10.6 Register Maps
      1. 10.6.1 Conversion Register [reset = 0000h]
        1. Table 6. Conversion Register Field Descriptions
      2. 10.6.2 Config Register [reset = 058Bh]
        1. Table 7. Config Register Field Descriptions
  11. 11Application and Implementation
    1. 11.1 Application Information
      1. 11.1.1 Serial Interface Connections
      2. 11.1.2 GPIO Ports for Communication
      3. 11.1.3 Analog Input Filtering
      4. 11.1.4 Single-Ended Inputs
      5. 11.1.5 Connecting Multiple Devices
      6. 11.1.6 Pseudo Code Example
    2. 11.2 Typical Application
      1. 11.2.1 Design Requirements
      2. 11.2.2 Detailed Design Procedure
      3. 11.2.3 Application Curves
  12. 12Power Supply Recommendations
    1. 12.1 Power-Supply Sequencing
    2. 12.2 Power-Supply Decoupling
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
  14. 14デバイスおよびドキュメントのサポート
    1. 14.1 ドキュメントのサポート
      1. 14.1.1 関連資料
    2. 14.2 ドキュメントの更新通知を受け取る方法
    3. 14.3 コミュニティ・リソース
    4. 14.4 商標
    5. 14.5 静電気放電に関する注意事項
    6. 14.6 Glossary
  15. 15メカニカル、パッケージ、および注文情報

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Serial Interface Connections

The principle serial interface connections for the ADS1118 are shown in Figure 45.

ADS1118 ai_typ_connex_bas457.gifFigure 45. Typical Connections of the ADS1118

Most microcontroller SPI peripherals can operate with the ADS1118. The interface operates in SPI mode 1 where CPOL = 0 and CPHA = 1. In SPI mode 1, SCLK idles low and data are launched or changed only on SCLK rising edges; data are latched or read by the master and slave on SCLK falling edges. Details of the SPI communication protocol employed by the ADS1118 can be found in the Timing Requirements: Serial Interface section.

It is a good practice to place 50-Ω resistors in the series path to each of the digital pins to provide some short circuit protection. Care must be taken to still meet all SPI timing requirements because these additional series resistors along with the bus parasitic capacitances present on the digital signal lines could slew the signals.

The fully-differential input of the ADS1118 is ideal for connecting to differential sources (such as thermocouples and thermistors) with a moderately low source impedance. Although the ADS1118 can read fully-differential signals, the device cannot accept negative voltages on either of its inputs because of ESD protection diodes on each pin. When an input exceeds supply or drops below ground, these diodes turn on to prevent any ESD damage to the device.