Startseite Schnittstelle Andere Schnittstellen

SN75LBC968

AKTIV

9-kanaliger Bus-Transceiver mit aktiver Terminierung

Produktdetails

Protocols Catalog Rating Catalog Operating temperature range (°C) 0 to 70
Protocols Catalog Rating Catalog Operating temperature range (°C) 0 to 70
SSOP (DL) 56 190.647 mm² 18.42 x 10.35
  • Nine Single-Ended SCSI Transceiver Channels With Active Termination
  • Programmable Drivers Provide Active Negation (Totem Pole) or Wired-OR (Open Drain) Outputs
  • 24-mA Current-Mode Active Termination With Common Nine-Channel Bus Enable
  • Low Output Capacitance Presented to SCSI Bus, 13.5 pF Typ
  • 3.3 V Compatible Logic Inputs Provide Bridge from 3 V Controllers to 5 V SCSI Bus
  • Designed to Operate at 10-Million Data Transfers Per Second (Fast-SCSI)
  • Controlled Driver Rise and Fall Times
         5 ns Min
  • High-Receiver Input-Voltage Hysteresis
         500 mV Typ
  • Receiver Input-Noise Pulse Filter
         5 ns Typ
  • Each Driver and Receiver Meets ANSI X3.131-1994 (SCSI-2) and the Proposed SCSI-3 Standards
  • Power-Up/Power-Down Glitch Protection
  • High Impedance Driver With VCC at 0 V

LinBiCMOS is a trademark of Texas Instruments Incorporated.

  • Nine Single-Ended SCSI Transceiver Channels With Active Termination
  • Programmable Drivers Provide Active Negation (Totem Pole) or Wired-OR (Open Drain) Outputs
  • 24-mA Current-Mode Active Termination With Common Nine-Channel Bus Enable
  • Low Output Capacitance Presented to SCSI Bus, 13.5 pF Typ
  • 3.3 V Compatible Logic Inputs Provide Bridge from 3 V Controllers to 5 V SCSI Bus
  • Designed to Operate at 10-Million Data Transfers Per Second (Fast-SCSI)
  • Controlled Driver Rise and Fall Times
         5 ns Min
  • High-Receiver Input-Voltage Hysteresis
         500 mV Typ
  • Receiver Input-Noise Pulse Filter
         5 ns Typ
  • Each Driver and Receiver Meets ANSI X3.131-1994 (SCSI-2) and the Proposed SCSI-3 Standards
  • Power-Up/Power-Down Glitch Protection
  • High Impedance Driver With VCC at 0 V

LinBiCMOS is a trademark of Texas Instruments Incorporated.

The SN75LBC968 is a nine-channel transceiver with active termination that drives and receives the signals from the single-ended, parallel data buses such as the Small Computer-Systems Interface (SCSI) bus. The features of the line drivers, receivers, and active-termination circuits provide the optimum signal-to-noise ratios for reliable data transmission. Integration of the termination and transceivers in the LinBiCMOS™ process provides the necessary analog-circuit performance, has low quiescent power, and reduces the capacitance presented to the bus over separate termination and I/O circuits.

The transceivers of the SN75LBC968 can be enabled to function as totem-pole or open-drain outputs. The open-drain mode drives the wired-OR lines of SCSI (BSY, SEL, and RST) by inputting the data to the direction control input DE/RE instead of the A input. When driving the data through the A input, the outputs become totem poles and provide active signal negation for a higher voltage level on low-to-high signal transitions on heavily loaded buses. In either mode, the turnon and turnoff output transition times are limited to minimize crosstalk through capacitive coupling to adjacent lines and RF emissions from the cable. The receivers are also designed for optimum analog performance by precisely controlling the input-voltage thresholds, providing wide input-voltage hysteresis and including an input-noise filter. These features significantly increase the likelihood of detecting only the desired data signal and rejecting noise.

The communication between the SN75LBC968 and the controller can be accomplished at 3.3-V logic levels provided that the VCC1 input connects to the same supply rail as the controller. This provides a bridge from the lower-voltage circuit and the 5-V SCSI bus. The SN75LBC968 also removes the need for special I/O buffers (and associated power dissipation) on the controller itself. The SN75LBC968 must be used with a SCSI controller with support for Differential SCSI.

The integrated, current-mode, active termination supplies a constant 24 mA of current (TERMPWR) to the bus when the bus voltage falls below 2.5 V. This makes the next low-to-high (negation) signal transition independent of the low-level (asserted) bus voltage, unlike voltage-mode terminators. The termination current is provided through the TE input and from TERMPWR and can be disabled by letting the TE input float or by connecting it to ground. The termination circuitry is independent from the line drivers and receivers and VCC or VCC1. Operational termination is present as long as TERMPWR is applied.

The switching speeds of the SN75LBC968 are sufficient to transfer data over the data bus at ten million transfers per second (Fast-SCSI). The specification, tsk(lim), is for system skew budgeting and maintenance of bus set-up and hold times. The device is available in the space-efficient shrink-small-outline package (SSOP) with 25-mil lead pitch. The SN75LBC968 meets or exceeds the requirements of ANSI X3.131–1994 (SCSI-2) and the proposed SPI (SCSI-3) standards, and is characterized for operation from 0°C to 70°C.

The SN75LBC968 is a nine-channel transceiver with active termination that drives and receives the signals from the single-ended, parallel data buses such as the Small Computer-Systems Interface (SCSI) bus. The features of the line drivers, receivers, and active-termination circuits provide the optimum signal-to-noise ratios for reliable data transmission. Integration of the termination and transceivers in the LinBiCMOS™ process provides the necessary analog-circuit performance, has low quiescent power, and reduces the capacitance presented to the bus over separate termination and I/O circuits.

The transceivers of the SN75LBC968 can be enabled to function as totem-pole or open-drain outputs. The open-drain mode drives the wired-OR lines of SCSI (BSY, SEL, and RST) by inputting the data to the direction control input DE/RE instead of the A input. When driving the data through the A input, the outputs become totem poles and provide active signal negation for a higher voltage level on low-to-high signal transitions on heavily loaded buses. In either mode, the turnon and turnoff output transition times are limited to minimize crosstalk through capacitive coupling to adjacent lines and RF emissions from the cable. The receivers are also designed for optimum analog performance by precisely controlling the input-voltage thresholds, providing wide input-voltage hysteresis and including an input-noise filter. These features significantly increase the likelihood of detecting only the desired data signal and rejecting noise.

The communication between the SN75LBC968 and the controller can be accomplished at 3.3-V logic levels provided that the VCC1 input connects to the same supply rail as the controller. This provides a bridge from the lower-voltage circuit and the 5-V SCSI bus. The SN75LBC968 also removes the need for special I/O buffers (and associated power dissipation) on the controller itself. The SN75LBC968 must be used with a SCSI controller with support for Differential SCSI.

The integrated, current-mode, active termination supplies a constant 24 mA of current (TERMPWR) to the bus when the bus voltage falls below 2.5 V. This makes the next low-to-high (negation) signal transition independent of the low-level (asserted) bus voltage, unlike voltage-mode terminators. The termination current is provided through the TE input and from TERMPWR and can be disabled by letting the TE input float or by connecting it to ground. The termination circuitry is independent from the line drivers and receivers and VCC or VCC1. Operational termination is present as long as TERMPWR is applied.

The switching speeds of the SN75LBC968 are sufficient to transfer data over the data bus at ten million transfers per second (Fast-SCSI). The specification, tsk(lim), is for system skew budgeting and maintenance of bus set-up and hold times. The device is available in the space-efficient shrink-small-outline package (SSOP) with 25-mil lead pitch. The SN75LBC968 meets or exceeds the requirements of ANSI X3.131–1994 (SCSI-2) and the proposed SPI (SCSI-3) standards, and is characterized for operation from 0°C to 70°C.

Herunterladen Video mit Transkript ansehen Video

Technische Dokumentation

star =Von TI ausgewählte Top-Empfehlungen für dieses Produkt
Keine Ergebnisse gefunden. Bitte geben Sie einen anderen Begriff ein und versuchen Sie es erneut.
Alle anzeigen 1
Typ Titel Datum
* Data sheet 9-Channel Bus Transceiver With Active Termination datasheet (Rev. E) 09 Aug 2005

Design und Entwicklung

Weitere Bedingungen oder erforderliche Ressourcen enthält gegebenenfalls die Detailseite, die Sie durch Klicken auf einen der unten stehenden Titel erreichen.

Simulationstool

PSPICE-FOR-TI — PSpice® für TI Design-und Simulationstool

PSpice® für TI ist eine Design- und Simulationsumgebung, welche Sie dabei unterstützt, die Funktionalität analoger Schaltungen zu evaluieren. Diese voll ausgestattete Design- und Simulationssuite verwendet eine analoge Analyse-Engine von Cadence®. PSpice für TI ist kostenlos erhältlich und (...)
Simulationstool

TINA-TI — SPICE-basiertes analoges Simulationsprogramm

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
Benutzerhandbuch: PDF
Gehäuse Pins Herunterladen
SSOP (DL) 56 Optionen anzeigen

Bestellen & Qualität

Beinhaltete Information:
  • RoHS
  • REACH
  • Bausteinkennzeichnung
  • Blei-Finish/Ball-Material
  • MSL-Rating / Spitzenrückfluss
  • MTBF-/FIT-Schätzungen
  • Materialinhalt
  • Qualifikationszusammenfassung
  • Kontinuierliches Zuverlässigkeitsmonitoring
Beinhaltete Information:
  • Werksstandort
  • Montagestandort

Support und Schulungen

TI E2E™-Foren mit technischem Support von TI-Ingenieuren

Inhalte werden ohne Gewähr von TI und der Community bereitgestellt. Sie stellen keine Spezifikationen von TI dar. Siehe Nutzungsbedingungen.

Bei Fragen zu den Themen Qualität, Gehäuse oder Bestellung von TI-Produkten siehe TI-Support. ​​​​​​​​​​​​​​

Videos