SLUSFR7 August   2025 BQ24810

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Timing Requirements
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Device Power Up
        1. 6.3.1.1 Battery Only
        2. 6.3.1.2 Adapter Detect and ACOK Output
          1. 6.3.1.2.1 Adapter Overvoltage (ACOV)
        3. 6.3.1.3 REGN LDO
      2. 6.3.2 System Power Selection
      3. 6.3.3 Current and Power Monitor
        1. 6.3.3.1 High Accuracy Current Sense Amplifier (IADP and IDCHG)
        2. 6.3.3.2 High Accuracy Power Sense Amplifier (PMON)
      4. 6.3.4 Processor Hot Indication for CPU Throttling
      5. 6.3.5 Input Current Dynamic Power Management
        1. 6.3.5.1 Setting Input Current Limit
      6. 6.3.6 Two-Level Adapter Current Limit (Peak Power Mode)
      7. 6.3.7 EMI Switching Frequency Adjust
      8. 6.3.8 Device Protections Features
        1. 6.3.8.1 Charger Timeout
        2. 6.3.8.2 Input Overcurrent Protection (ACOC)
        3. 6.3.8.3 Charge Overcurrent Protection (CHG_OCP)
        4. 6.3.8.4 Battery Overvoltage Protection (BATOVP)
        5. 6.3.8.5 Battery Short
        6. 6.3.8.6 Thermal Shutdown Protection (TSHUT)
        7. 6.3.8.7 Inductor Short, MOSFET Short Protection
    4. 6.4 Device Functional Modes
      1. 6.4.1 Battery Charging in Buck Mode
        1. 6.4.1.1 Setting the Charge Current
        2. 6.4.1.2 Setting the Charge Voltage
        3. 6.4.1.3 Automatic Internal Soft-Start Charger Current
      2. 6.4.2 Hybrid Power Boost Mode
      3. 6.4.3 Battery Only Boost Mode
        1. 6.4.3.1 Setting AC_PLUG_EXIT_DEG in Battery Only Boost Mode
        2. 6.4.3.2 Setting Minimum System Voltage in Battery Only Boost Mode
      4. 6.4.4 Battery Discharge Current Regulation in Hybrid Boost Mode and Battery Only Boost Mode
      5. 6.4.5 Battery LEARN Cycle
      6. 6.4.6 Converter Operational Modes
        1. 6.4.6.1 Continuous Conduction Mode (CCM)
        2. 6.4.6.2 Discontinuous Conduction Mode (DCM)
        3. 6.4.6.3 Non-Sync Mode and Light Load Comparator
    5. 6.5 Programming
      1. 6.5.1 SMBus Interface
        1. 6.5.1.1 SMBus Write-Word and Read-Word Protocols
        2. 6.5.1.2 Timing Diagrams
    6. 6.6 Register Maps
      1. 6.6.1  Battery-Charger Commands
      2. 6.6.2  Setting Charger Options
        1. 6.6.2.1 ChargeOption0 Register
      3. 6.6.3  ChargeOption1 Register
      4. 6.6.4  ChargeOption2 Register
      5. 6.6.5  ChargeOption3 Register
      6. 6.6.6  ChargeOption4 Register
      7. 6.6.7  ProchotOption0 Register
      8. 6.6.8  ProchotOption1 Register
      9. 6.6.9  ProchotStatus Register
      10. 6.6.10 Charge Current Register
      11. 6.6.11 Charge Voltage Register
      12. 6.6.12 Discharge Current Register
      13. 6.6.13 Minimum System Voltage Register
      14. 6.6.14 Input Current Register
      15. 6.6.15 Register Exceptions
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Typical System Schematic
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1  Adapter Current Sense Filter
          2. 7.2.1.2.2  Negative Output Voltage Protection
          3. 7.2.1.2.3  Reverse Input Voltage Protection
          4. 7.2.1.2.4  Reduce Battery Quiescent Current
          5. 7.2.1.2.5  CIN Capacitance
          6. 7.2.1.2.6  L1 Inductor Selection
          7. 7.2.1.2.7  CBATT Capacitance
          8. 7.2.1.2.8  Buck Charging Internal Compensation
          9. 7.2.1.2.9  CSYS Capacitance
          10. 7.2.1.2.10 Battery Only Boost Internal Compensation
          11. 7.2.1.2.11 Power MOSFETs Selection
          12. 7.2.1.2.12 Input Filter Design
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Migration from Previous Devices (Does Not Support Battery Only Boost)
        1. 7.2.2.1 Design Requirements
        2. 7.2.2.2 Detailed Design Procedure
          1. 7.2.2.2.1 CSYS Capacitance
        3. 7.2.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Examples
        1. 7.4.2.1 Layout Consideration of Current Path
        2. 7.4.2.2 Layout Consideration of Short Circuit Protection
        3. 7.4.2.3 Layout Consideration for Short Circuit Protection
  9. Device and Documentation Support
    1. 8.1 Third-Party Products Disclaimer
    2. 8.2 Documentation Support
      1. 8.2.1 Related Documentation
    3. 8.3 Receiving Notification of Documentation Updates
    4. 8.4 Support Resources
    5. 8.5 Trademarks
    6. 8.6 Electrostatic Discharge Caution
    7. 8.7 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RUY|28
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Inductor Short, MOSFET Short Protection

The BQ24810 device has a unique short circuit protection feature. Its cycle-by-cycle current monitoring feature is achieved through monitoring the voltage drop across RDS(on) of the switching MOSFETs. In case of a MOSFET short or inductor short circuit, the overcurrent condition is sensed by the comparator, the HSFET or LSFET is turned off for the remainder of the switching cycle, and a counter is incremented. The high-side and low-side MOSFETs each have an independent comparator and counter. After either counter reaches seven, the charger is latched off and ACFET and RBFET are turned off to disconnect the adapter from the system. BATFET is turned on to connect the battery pack to the system. The short circuit counters are reset each time that the power stage is enabled, but once either counter reaches seven, the charger is latched off. To reset the charger from latch-off status, the IC VCC pin must be pulled below UVLO or the ACDET pin must be pulled below 0.6 V. The low-side MOSFET Vds monitor circuit is enabled by REG0x37[7], and the threshold is 250 mV measured between the PHASE and GND pins. The high-side MOSFET Vds monitor circuit is enabled by REG0x37[6], and the threshold is 750 mV measured between the ACP and PHASE pins, including both the RAC sense resistor and the HSFET. During hybrid boost and battery only boost functions, the low-side MOSFET short circuit protection threshold is used for cycle-by-cycle current limiting, but the charger does not latch off.

Due to the blanking time of the MOSFET short protection, which blanks out the switching noise from when the MOSFET first turns on, the cycle-by-cycle charge overcurrent protection may detect high current and turn off MOSFET before the MOSFET short protection is triggered. In such a case, the charger's MOSFET short protection may not be activated, so that the counter does not count to seven and then latch off. Instead the charger may continuously keep switching with very narrow duty cycle to limit the cycle-by-cycle current peak value. However, the charger should still be safe and does not cause failure because the duty cycle is limited to a very short time and the MOSFET should still be inside the safety operation area. During a soft start period, it may take a long time instead of just seven switching cycles to detect short circuit due to the same reason of the blanking time.