SLVSFV5A july   2023  – july 2023 DRV8262

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
      1. 6.4.1 Transient Thermal Impedance & Current Capability
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1  Overview
    2. 7.2  Functional Block Diagram
    3. 7.3  Feature Description
    4. 7.4  Device Operational Modes
      1. 7.4.1 Dual H-Bridge Mode (MODE1 = 0)
      2. 7.4.2 Single H-Bridge Mode (MODE1 = 1)
    5. 7.5  Current Sensing and Regulation
      1. 7.5.1 Current Sensing and Feedback
      2. 7.5.2 Current Regulation
        1. 7.5.2.1 Mixed Decay
        2. 7.5.2.2 Smart tune Dynamic Decay
      3. 7.5.3 Current Sensing with External Resistor
    6. 7.6  Charge Pump
    7. 7.7  Linear Voltage Regulator
    8. 7.8  VCC Voltage Supply
    9. 7.9  Logic Level, Tri-Level and Quad-Level Pin Diagrams
    10. 7.10 Protection Circuits
      1. 7.10.1 VM Undervoltage Lockout (UVLO)
      2. 7.10.2 VCP Undervoltage Lockout (CPUV)
      3. 7.10.3 Logic Supply Power on Reset (POR)
      4. 7.10.4 Overcurrent Protection (OCP)
      5. 7.10.5 Thermal Shutdown (OTSD)
      6. 7.10.6 nFAULT Output
      7. 7.10.7 Fault Condition Summary
    11. 7.11 Device Functional Modes
      1. 7.11.1 Sleep Mode
      2. 7.11.2 Operating Mode
      3. 7.11.3 nSLEEP Reset Pulse
      4. 7.11.4 Functional Modes Summary
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Driving Brushed-DC Motors
        1. 8.1.1.1 Brushed-DC Motor Driver Typical Application
        2. 8.1.1.2 Power Loss Calculations - Dual H-bridge
        3. 8.1.1.3 Power Loss Calculations - Single H-bridge
        4. 8.1.1.4 Junction Temperature Estimation
        5. 8.1.1.5 Application Performance Plots
      2. 8.1.2 Driving Stepper Motors
        1. 8.1.2.1 Stepper Driver Typical Application
        2. 8.1.2.2 Power Loss Calculations
        3. 8.1.2.3 Junction Temperature Estimation
      3. 8.1.3 Driving Thermoelectric Coolers (TEC)
  10. Package Thermal Considerations
    1. 9.1 DDW Package
      1. 9.1.1 Thermal Performance
        1. 9.1.1.1 Steady-State Thermal Performance
        2. 9.1.1.2 Transient Thermal Performance
    2. 9.2 DDV Package
    3. 9.3 PCB Material Recommendation
  11. 10Power Supply Recommendations
    1. 10.1 Bulk Capacitance
    2. 10.2 Power Supplies
  12. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  13. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  14. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Tape and Reel Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Steady-State Thermal Performance

"Steady-state" conditions assume that the driver operates with a constant RMS current over a long period of time. The figures in this section show how RθJA and ΨJB (junction-to-board characterization parameter) change depending on copper area, copper thickness, and number of layers of the PCB. More copper area, more layers, and thicker copper planes decrease RθJA and ΨJB, which indicate better thermal performance from the PCB layout.

GUID-20230308-SS0I-JL5J-WLRW-DRJV0XZ6ZQBX-low.svgFigure 9-2 DDW Package, PCB junction-to-ambient thermal resistance vs copper area
GUID-20230308-SS0I-JP5P-S2DS-KDNZ7JDDG5QM-low.svgFigure 9-3 DDW Package, junction-to-board characterization parameter vs copper area