SLLSEP8C July   2015  – July 2025 ISO7831

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Rating
    6. 5.6  Insulation Specifications
    7. 5.7  Safety-Related Certifications
    8. 5.8  Safety Limiting Values
    9. 5.9  Electrical Characteristics—5V Supply
    10. 5.10 Supply Current Characteristics—5-V Supply
    11. 5.11 Electrical Characteristics—3.3V Supply
    12. 5.12 Supply Current Characteristics—3.3V Supply
    13. 5.13 Electrical Characteristics—2.5V Supply
    14. 5.14 Supply Current Characteristics—2.5V Supply
    15. 5.15 Switching Characteristics—5V Supply
    16. 5.16 Switching Characteristics—3.3V Supply
    17. 5.17 Switching Characteristics—2.5V Supply
    18. 5.18 Insulation Characteristics Curves
    19. 5.19 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Electromagnetic Compatibility (EMC) Considerations
    4. 7.4 Device Functional Modes
      1. 7.4.1 Device I/O Schematics
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 PCB Material
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
        1. 9.1.1.1 Related Links
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DWW|16
  • DW|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Insulation Specifications

PARAMETER TEST CONDITIONS SPECIFICATION UNIT
DW DWW
CLR External clearance(1) Shortest terminal-to-terminal distance through air >8 >14.5 mm
Shortest terminal-to-terminal distance through air (typical) 15.0 mm
CPG External creepage(1) Shortest terminal-to-terminal distance across the package surface >8 >14.5 mm
Shortest terminal-to-terminal distance across the package surface (typical) 15.0 mm
DTI Distance through the insulation Minimum internal gap (internal clearance) >21 >21 μm
CTI Comparative tracking index DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A >600 >600 V
Material group I I
Overvoltage category per IEC 60664-1 Rated mains voltage ≤ 600VRMS I–IV I–IV
Rated mains voltage ≤ 1000VRMS I–III I–IV
DIN EN IEC 60747-17 (VDE 0884-17)(2)
VIORM Maximum repetitive peak isolation voltage 2121 2828 VPK
VIOWM Maximum isolation working voltage AC voltage (sine wave); Time dependent dielectric breakdown (TDDB) Test, see Figure 5-1 and Figure 5-2 1500 2000 VRMS
DC voltage 2121 2828 VDC
VIOTM Maximum transient isolation voltage VTEST = VIOTM, t = 60s (qualification)
VTEST = 1.2 x VIOTM, t= 1s (100% production)
8000 8000 VPK
VIMP Maximum impulse voltage (3) Tested in air, 1.2/50μs waveform per IEC 62368-1 9800 9800 VPK
VIOSM Maximum surge isolation voltage (4) VIOSM ≥ 1.3 x VIMP; Tested in oil (qualification test), 1.2/50-μs waveform per IEC 62368-1 12800 12800 VPK
qpd Apparent charge (5) Method a: After I/O safety test subgroup 2/3,
Vini = VIOTM, tini = 60s;
Vpd(m) = 1.2 × VIOTM = 2545VPK (DW) and 3394VPK (DWW), tm = 10s
≤5 ≤5 pC
Method a: After environmental tests subgroup 1,
Vini = VIOTM, tini = 60s;
Vpd(m) = 1.6 × VIORM = 3394VPK (DW) and 4525VPK (DWW), tm = 10s
≤5 ≤5

Method b: At routine test (100% production);

Vini = 1.2 x VIOTM, tini = 1s;

Vpd(m) = 1.875 x VIORM, tm = 1s (method b1) or

Vpd(m) = Vini, tm = tini (method b2)

≤5 ≤5
CIO Barrier capacitance, input to output(6) VIO = 0.4 × sin (2πft), f = 1MHz 2 2 pF
RIO Isolation resistance, input to output (6) VIO = 500V, TA = 25°C >1012 >1012
VIO = 500V, 100°C ≤ TA ≤ 125°C >1011 >1011
VIO = 500V at TS = 150°C >109 >109
Pollution degree 2 2
Climatic category 55/125/21 55/125/21
UL 1577
VISO Withstand isolation voltage VTEST = VISO = 5700VRMS, t = 60s (qualification),
VTEST = 1.2 × VISO = 6840VRMS, t = 1s (100% production)
5700 5700 VRMS
Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications.
This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits.
Testing is carried out in air to determine the surge immunity of the package.
Testing is carried out in oil to determine the intrinsic surge immunity of the isolation barrier.
Apparent charge is electrical discharge caused by a partial discharge (pd).
All pins on each side of the barrier tied together creating a two-terminal device.