SNOS631E November   1994  – March 2025 LMC6061 , LMC6062 , LMC6064

PRODUCTION DATA  

  1.   1
  2. 1Features
  3. 2Applications
  4. 3Description
  5. 4Pin Configuration and Functions
  6. 5Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information: LMC6061
    5. 5.5 Thermal Information: LMC6062
    6. 5.6 Thermal Information: LMC6064
    7. 5.7 Electrical Characteristics
    8. 5.8 Typical Characteristics
  7. 6Application and Implementation
    1. 6.1 Applications Information
      1. 6.1.1 Amplifier Topology
      2. 6.1.2 Compensating For Input Capacitance
      3. 6.1.3 Capacitive Load Tolerance
      4. 6.1.4 Latchup
    2. 6.2 Typical Applications
      1. 6.2.1 Instrumentation Amplifier
      2. 6.2.2 Low-Leakage Sample-and-Hold
      3. 6.2.3 1Hz Square-Wave Oscillator
    3. 6.3 Layout
      1. 6.3.1 Layout Guidelines
        1. 6.3.1.1 Printed Circuit Board Layout For High Impedance Work
      2. 6.3.2 Layout Example
  8. 7Device and Documentation Support
    1. 7.1 Receiving Notification of Documentation Updates
    2. 7.2 Support Resources
    3. 7.3 Trademarks
    4. 7.4 Electrostatic Discharge Caution
    5. 7.5 Glossary
  9. 8Revision History
  10. 9Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|14
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Instrumentation Amplifier

The extremely high input impedance, and low power consumption, of the LMC606x make them an excellent choice for applications that require battery-powered instrumentation amplifiers. Examples of these types of applications are portable pH probes, analytic medical instruments, magnetic field detectors, gas detectors, and silicon-based pressure transducers.

Figure 6-4 shows an instrumentation amplifier that features high differential and common mode input resistance (> 1014Ω), 0.01% gain accuracy at AV = 100, excellent CMRR with 1kΩ imbalance in bridge source resistance. Input current is less than 100fA and offset drift is less than 2.5μV/°C. R2 provides a simple means of adjusting gain over a wide range without degrading CMRR. R7 is an initial trim used to maximize CMRR without using super precision matched resistors. For good CMRR over temperature, use low-drift resistors.

LMC6061 LMC6062 LMC6064 Instrumentation
                    Amplifier Figure 6-4 Instrumentation Amplifier

If R1 = R5, R3 = R6, and R4 = R7, then

Equation 3. V O U T V I N = R 4 R 3 R 2 + 2 R 1 R 2

and AV ≅ 100 for the circuit shown in Figure 6-4 (R2 = 9.1kΩ). Note that VIN = VIN+ − VIN−.