SLCS136V August   1999  – May 2025 LMV331 , LMV339 , LMV393

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics, VCC+ = 2.7V
    6. 5.6 Switching Characteristics, VCC+ = 2.7V
    7. 5.7 Electrical Characteristics, VCC+ = 5V
    8. 5.8 Switching Characteristics, VCC+ = 5V
    9. 5.9 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
    4. 6.4 Device Functional Modes
      1. 6.4.1 Voltage Comparison
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Input Voltage Range
        2. 7.2.2.2 Minimum Overdrive Voltage
        3. 7.2.2.3 Output and Drive Current
        4. 7.2.2.4 Response Time
      3. 7.2.3 Application Curves
  9. Power Supply Recommendations
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Related Links
  12. 11Trademarks
  13. 12Electrostatic Discharge Caution
  14. 13Glossary
  15. 14Revision History
  16. 15Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • DBV|5
  • DCK|5
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Electrostatic Discharge Caution

LMV331 LMV393 LMV339  This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.