SNAS783C June   2020  – February 2021 LMX2820

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Reference Oscillator Input
      2. 7.3.2  Input Path
        1. 7.3.2.1 Input Path Doubler (OSC_2X)
        2. 7.3.2.2 Pre-R Divider (PLL_R_PRE)
        3. 7.3.2.3 Programmable Input Multiplier (MULT)
        4. 7.3.2.4 R Divider (PLL_R)
      3. 7.3.3  PLL Phase Detector and Charge Pump
      4. 7.3.4  N Divider and Fractional Circuitry
        1. 7.3.4.1 Integer N Divide Portion (PLL_N)
        2. 7.3.4.2 Fractional N Divide Portion (PLL_NUM and PLL_DEN)
        3. 7.3.4.3 Modulator Order (MASH_ORDER)
      5. 7.3.5  LD Pin Lock Detect
      6. 7.3.6  MUXOUT Pin and Readback
      7. 7.3.7  Internal VCO
        1. 7.3.7.1 VCO Calibration
          1. 7.3.7.1.1 Determining the VCO Gain and Ranges
      8. 7.3.8  Channel Divider
      9. 7.3.9  Output Frequency Doubler
      10. 7.3.10 Output Buffer
      11. 7.3.11 Power-Down Modes
      12. 7.3.12 Phase Synchronization for Multiple Devices
        1. 7.3.12.1 SYNC Categories
        2. 7.3.12.2 Phase Adjust
          1. 7.3.12.2.1 Using MASH_SEED to Create a Phase Shift
          2. 7.3.12.2.2 Static vs. Dynamic Phase Adjust
          3. 7.3.12.2.3 Fine Adjustments to Phase Adjust
      13. 7.3.13 SYSREF
      14. 7.3.14 Fast VCO Calibration
      15. 7.3.15 Double Buffering (Shadow Registers)
      16. 7.3.16 Output Mute Pin and Ping Pong Approaches
    4. 7.4 Device Functional Modes
      1. 7.4.1 External VCO Mode
      2. 7.4.2 External Feedback Input Pins
        1. 7.4.2.1 PFDIN External Feedback Mode
        2. 7.4.2.2 RFIN External Feedback Mode
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Treatment of Unused Pins
      2. 8.1.2 External Loop Filter
      3. 8.1.3 Using Instant Calibration
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Initialization and Power-on Sequencing
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Support Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Fine Adjustments to Phase Adjust

Phase SYNC refers to the process of getting the same phase relationship for every power-up cycle and each time assuming that a given programming procedure is followed. However, in cases of higher output frequencies which have shorter periods, there are some adjustments that may be necessary to achieve the most accurate results.. As for the consistency of the phase SYNC, the only source of variation could be if the VCO calibration chooses a different VCO core and capacitor, which can introduce a bimodal distribution with about 10 ps of variation. If this 10 ps is not desirable, then it can be eliminated by either using the instant calibration based VCO calibration or Full assist VCO calibration.

The delay through the device varies from part to part and can be on the order of 60 ps. This part to part variation can be calibrated out with the MASH_SEED. The variation in delay through the device also changes on the order of +2.5 ps/°C, but devices on the same board likely have similar temperatures, so this will somewhat track. In summary, the device can be made to have consistent delay through the part and there are means to adjust out any remaining errors with the MASH_SEED. This tends only to be an issue at higher output frequencies when the period is shorter.