SLVSIQ0 May   2025 LP8865C-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Adaptive Off-Time Current Mode Control
      2. 7.3.2 Setting LED Current
      3. 7.3.3 Internal Soft Start
      4. 7.3.4 Dimming Mode
        1. 7.3.4.1 PWM dimming
        2. 7.3.4.2 Analog dimming
      5. 7.3.5 Fault Protection
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 LP8865CUQDGNRQ1 12V Input, 1A Output, 8-piece WLED Driver With Analog Dimming
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Inductor Selection
          2. 8.2.1.2.2 Input Capacitor Selection
          3. 8.2.1.2.3 Output Capacitor Selection
          4. 8.2.1.2.4 Sense Resistor Selection
          5. 8.2.1.2.5 Other External Components Selection
      2. 8.2.2 LP8865CYQDGNRQ1 24V Input, 0.5A Output, 4-piece WLED Driver With PWM Dimming
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Inductor Selection
          2. 8.2.2.2.2 Input Capacitor Selection
          3. 8.2.2.2.3 Output Capacitor Selection
          4. 8.2.2.2.4 Sense Resistor Selection
          5. 8.2.2.2.5 Other External Components Selection
      3. 8.2.3 LP8865CWQDGNRQ1 24V Input, 2A Output, 4-piece WLED Driver With Analog Dimming
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
          1. 8.2.3.2.1 Inductor Selection
          2. 8.2.3.2.2 Input Capacitor Selection
          3. 8.2.3.2.3 Output Capacitor Selection
          4. 8.2.3.2.4 Sense Resistor Selection
          5. 8.2.3.2.5 Other External Components Selection
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Input Capacitor Selection

An input capacitor is required to reduce the surge current drawn from the input supply and the switching noise coming from the device. Electrolytic capacitors are recommended for energy storage. Ceramic capacitors with X5R or X7R dielectrics are highly recommended because of their low ESR and small temperature coefficients. For most applications, it is recommended to place a 10μF capacitor along with a 0.1µF capacitor from VIN to PGND/AGND to provide high-frequency filtering. The input capacitor voltage rating must be greater than the maximum input voltage. Use Equation 28 to calculate the input ripple voltage, where ESRCIN is the ESR of input capacitor, and KDR is the derating coefficient of ceramic capacitance at the applied DC voltage.

Equation 28. V I N ( r i p p l e ) = I L ( m a x ) × ( V O U T K D R × C I N × f S W × V I N ( m a x ) + E S R C I N )

In this design, a 33µF, 100V electrolytic capacitor, two 22µF, 100V X7R ceramic capacitor and a 0.1µF, 100V X7R ceramic capacitor are chosen, yielding around 113mV input ripple voltage.