SLLS301R APRIL 1998 – January 2016 SN65LVDS050 , SN65LVDS051 , SN65LVDS179 , SN65LVDS180
PRODUCTION DATA.
Refer to the PDF data sheet for device specific package drawings
| MIN | MAX | UNIT | |||
|---|---|---|---|---|---|
| VCC(2) | Supply voltage range | –0.5 | 4 | V | |
| Voltage range: | D, R, DE, RE | –0.5 | 6 | V | |
| Y, Z, A, and B | –0.5 | 4 | V | ||
| |VOD| | Differential output voltage | 1 | V | ||
| Continuous power dissipation | See Thermal Information | ||||
| Tstg | Storage temperature | –65 | 150 | °C | |
| VALUE | UNIT | ||||
|---|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Y, Z, A, B , and GND (see (1)) | Class 3, A | ±12000 | V |
| Class 3, B | ±600 | V | |||
| All | Class 3, A | ±7000 | V | ||
| Class 3, B | ±500 | V | |||
| Lead temperature 1.6 mm (1/16 inch) from case for 10 seconds | 250 | °C | |||
| MIN | NOM | MAX | UNIT | ||
|---|---|---|---|---|---|
| VCC | Supply voltage | 3 | 3.3 | 3.6 | V |
| VIH | High-level input voltage | 2 | V | ||
| VIL | Low-level input voltage | 0.8 | V | ||
| |VID| | Magnitude of differential input voltage | 0.05 | 0.6 | V | |
| |VOD(dis)| | Magnitude of differential output voltage with disabled driver | 520 | mV | ||
| VOY or VOZ | Driver output voltage | 0 | 2.4 | V | |
| VIC | Common-mode input voltage (see Figure 14) | VCC – 0.8 | V | ||
| TA | Operating free-air temperature | –40 | 85 | °C | |
| THERMAL METRIC(1) | SN65LVDS179 | SN65LVDS180 | SN65LVDS050, SN65LVDS051 | UNIT | ||||
|---|---|---|---|---|---|---|---|---|
| D | DGK | D | PW | D | PW | |||
| 8 PINS | 14 PINS | 16 PINS | ||||||
| Power Rating: TA≤ 25°C | 635 | 424 | 987 | 736 | 1110 | 839 | mW | |
| Derating Factor Above TA = 25°C(2) | 5.1 | 3.4 | 7.9 | 5.9 | 8.9 | 6.7 | mW/°C | |
| Power Rating: TA = 85°C | 330 | 220 | 513 | 383 | 577 | 437 | ||
| PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| ICC | Supply current | SN65LVDS179 | No receiver load, driver RL = 100 Ω | 9 | 12 | mA | |
| SN65LVDS180 | Driver and receiver enabled, no receiver load, driver RL = 100 Ω | 9 | 12 | mA | |||
| Driver enabled, receiver disabled, RL = 100 Ω | 5 | 7 | |||||
| Driver disabled, receiver enabled, no load | 1.5 | 2 | |||||
| Disabled | 0.5 | 1 | |||||
| SN65LVDS050 | Drivers and receivers enabled, no receiver loads, driver RL = 100 Ω | 12 | 20 | mA | |||
| Drivers enabled, receivers disabled, RL = 100 Ω | 10 | 16 | |||||
| Drivers disabled, receivers enabled, no loads | 3 | 6 | |||||
| Disabled | 0.5 | 1 | |||||
| SN65LVDS051 | Drivers enabled, no receiver loads, driver RL = 100 Ω | 12 | 20 | mA | |||
| Drivers disabled, no loads | 3 | 6 | |||||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| |VOD| | Differential output voltage magnitude | RL = 100 Ω, See Figure 11 and Figure 12 | 247 | 340 | 454 | mV | |
| Δ|VOD| | Change in differential output voltage magnitude between logic states | –50 | 50 | ||||
| VOC(SS) | Steady-state common-mode output voltage | See Figure 12 | 1.125 | 1.2 | 1.375 | V | |
| ΔVOC(SS) | Change in steady-state common-mode output voltage between logic states | –50 | 50 | mV | |||
| VOC(PP) | Peak-to-peak common-mode output voltage | 50 | 150 | mV | |||
| IIH | High-level input current | DE | VIH = 5 V | –0.5 | –20 | μA | |
| D | 2 | 20 | |||||
| IIL | Low-level input current | DE | VIL = 0.8 V | –0.5 | –10 | μA | |
| D | 2 | 10 | |||||
| IOS | Short-circuit output current | VOY or VOZ = 0 V | 3 | 10 | mA | ||
| VOD = 0 V | 3 | 10 | |||||
| IO(OFF) | Off-state output current | DE = 0 V VOY = VOZ = 0 V |
–1 | 1 | µA | ||
| DE = VCC
VOY = VOZ = 0 V VCC < 1.5 V |
|||||||
| CIN | Input capacitance | 3 | pF | ||||
| PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | |
|---|---|---|---|---|---|---|
| VIT+ | Positive-going differential input voltage threshold | See Figure 14 and Table 2 | 100 | mV | ||
| VIT– | Negative-going differential input voltage threshold | –100 | ||||
| VOH | High-level output voltage | IOH = –8 mA | 2.4 | V | ||
| IOH = –4 mA | 2.8 | |||||
| VOL | Low-level output voltage | IOL = 8 mA | 0.4 | V | ||
| II | Input current (A or B input) | VI = 0 V | –2 | –11 | –20 | μA |
| VI = 2.4 V | –1.2 | –3 | ||||
| II(OFF) | Power-off input current (A or B input) | VCC = 0 V | ±20 | μA | ||
| IIH | High-level input current (enables) | VIH = 5 V | ±10 | μA | ||
| IIL | Low-level input current (enables) | VIL = 0.8 V | ±10 | μA | ||
| IOZ | High-impedance output current | VO = 0 or 5 V | ±10 | μA | ||
| CI | Input capacitance | 5 | pF | |||
| PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | |
|---|---|---|---|---|---|---|
| tPLH | Propagation delay time, low-to-high-level output | RL = 100 Ω CL = 10 pF See Figure 11 |
1.7 | 2.7 | ns | |
| tPHL | Propagation delay time, high-to-low-level output | 1.7 | 2.7 | ns | ||
| tr | Differential output signal rise time | 0.8 | 1 | ns | ||
| tf | Differential output signal fall time | 0.8 | 1 | ns | ||
| tsk(p) | Pulse skew (|tpHL – tpLH|)(2) | 300 | ps | |||
| tsk(o) | Channel-to-channel output skew(3) | 150 | ps | |||
| ten | Enable time | See Figure 13 | 4.3 | 10 | ns | |
| tdis | Disable time | 3.1 | 10 | ns | ||
| PARAMETER | TEST CONDITIONS | MIN | TYP(1) | MAX | UNIT | |
|---|---|---|---|---|---|---|
| tPLH | Propagation delay time, low-to-high-level output | CL = 10 pF, See Figure 15 |
3.7 | 4.5 | ns | |
| tPHL | Propagation delay time, high-to-low-level output | 3.7 | 4.5 | ns | ||
| tsk(p) | Pulse skew (|tpHL – tpLH|)(2) | 0.3 | ns | |||
| tr | Output signal rise time | 0.7 | 1.5 | ns | ||
| tf | Output signal fall time | 0.9 | 1.5 | ns | ||
| tPZH | Propagation delay time, high-impedance-to-high-level output | See Figure 16 | 2.5 | ns | ||
| tPZL | Propagation delay time, high-impedance-to-low-level output | 2.5 | ns | |||
| tPHZ | Propagation delay time, high-level-to-high-impedance output | 7 | ns | |||
| tPLZ | Propagation delay time, low-level-to-high-impedance output | 4 | ns | |||
Figure 1. Disabled Driver Output Current vs Output Voltage
Figure 3. Driver High-Level Output Voltage vs High-Level Output Current
Figure 5. Receiver High-Level Output Voltage vs High-Level Output Current
Figure 7. Driver Low-to-High Level Propagation Delay Time vs Free-Air Temperature
Figure 9. Receiver Low-to-High Level Propagation Delay Time vs Free-Air Temperature
Figure 2. Driver Low-Level Output Voltage vs Low-Level Output Current
Figure 4. Receiver Low-Level Output Voltage vs Low-Level Output Current
Figure 6. Driver High-to-Low Level Propagation Delay Time vs Free-Air Temperature
Figure 8. Receiver High-to-Low Level Propagation Delay Time vs Free-Air Temperature