SLOSE73A June   2021  – November 2021 TAS6424E-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Recommended Operating Conditions
    3. 7.3 ESD Ratings
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics: Bridge-Tied Load (BTL)
    7. 7.7 Typical Characteristics: Bridge-Tied Load (BTL, 384 kHz)
    8. 7.8 Typical Characteristics: Parallel Bridge-Tied (PBTL)
    9. 7.9 Typical Characteristics: Parallel Bridge-Tied Load (PBTL, 384 kHz)
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Serial Audio Port
        1. 9.3.1.1 I2S Mode
        2. 9.3.1.2 Left-Justified Timing
        3. 9.3.1.3 Right-Justified Timing
        4. 9.3.1.4 TDM Mode
        5. 9.3.1.5 Supported Clock Rates
        6. 9.3.1.6 Audio-Clock Error Handling
      2. 9.3.2  DC Blocking
      3. 9.3.3  Volume Control and Gain
      4. 9.3.4  High-Frequency Pulse-Width Modulator (PWM)
      5. 9.3.5  EMI Management Features
        1. 9.3.5.1 Spread-Spectrum
        2. 9.3.5.2 Channel-to-Channel Output Phase Control
      6. 9.3.6  Gate Drive
      7. 9.3.7  Power FETs
      8. 9.3.8  Load Diagnostics
        1. 9.3.8.1 DC Load Diagnostics
        2. 9.3.8.2 Line Output Diagnostics
        3. 9.3.8.3 AC Load Diagnostics
          1. 9.3.8.3.1 Impedance Magnitude Measurement
          2. 9.3.8.3.2 Impedance Phase Reference Measurement
          3. 9.3.8.3.3 Impedance Phase Measurement
      9. 9.3.9  Protection and Monitoring
        1. 9.3.9.1 Overcurrent Limit (ILIMIT)
        2. 9.3.9.2 Overcurrent Shutdown (ISD)
        3. 9.3.9.3 DC Detect
        4. 9.3.9.4 Clip Detect
        5. 9.3.9.5 Global Overtemperature Warning (OTW), Overtemperature Shutdown (OTSD)
        6. 9.3.9.6 Channel Overtemperature Warning [OTW(i)] and Shutdown [OTSD(i)]
        7. 9.3.9.7 Undervoltage (UV) and Power-On-Reset (POR)
        8. 9.3.9.8 Overvoltage (OV) and Load Dump
      10. 9.3.10 Power Supply
        1. 9.3.10.1 Vehicle-Battery Power-Supply Sequence
          1. 9.3.10.1.1 Power-Up Sequence
          2. 9.3.10.1.2 Power-Down Sequence
        2. 9.3.10.2 Boosted Power-Supply Sequence
      11. 9.3.11 Hardware Control Pins
        1. 9.3.11.1 FAULT
        2. 9.3.11.2 WARN
        3. 9.3.11.3 MUTE
        4. 9.3.11.4 STANDBY
    4. 9.4 Device Functional Modes
      1. 9.4.1 Operating Modes and Faults
    5. 9.5 Programming
      1. 9.5.1 I2C Serial Communication Bus
      2. 9.5.2 I2C Bus Protocol
      3. 9.5.3 Random Write
      4. 9.5.4 Sequential Write
      5. 9.5.5 Random Read
      6. 9.5.6 Sequential Read
    6. 9.6 Register Maps
      1. 9.6.1  Mode Control Register (address = 0x00) [default = 0x00]
      2. 9.6.2  Miscellaneous Control 1 Register (address = 0x01) [default = 0x32]
      3. 9.6.3  Miscellaneous Control 2 Register (address = 0x02) [default = 0x62]
      4. 9.6.4  SAP Control (Serial Audio-Port Control) Register (address = 0x03) [default = 0x04]
      5. 9.6.5  Channel State Control Register (address = 0x04) [default = 0x55]
      6. 9.6.6  Channel 1 Through 4 Volume Control Registers (address = 0x05–0x08) [default = 0xCF]
      7. 9.6.7  DC Load Diagnostic Control 1 Register (address = 0x09) [default = 0x00]
      8. 9.6.8  DC Load Diagnostic Control 2 Register (address = 0x0A) [default = 0x11]
      9. 9.6.9  DC Load Diagnostic Control 3 Register (address = 0x0B) [default = 0x11]
      10. 9.6.10 DC Load Diagnostic Report 1 Register (address = 0x0C) [default = 0x00]
      11. 9.6.11 DC Load Diagnostic Report 2 Register (address = 0x0D) [default = 0x00]
      12. 9.6.12 DC Load Diagnostics Report 3 Line Output Register (address = 0x0E) [default = 0x00]
      13. 9.6.13 Channel State Reporting Register (address = 0x0F) [default = 0x55]
      14. 9.6.14 Channel Faults (Overcurrent, DC Detection) Register (address = 0x10) [default = 0x00]
      15. 9.6.15 Global Faults 1 Register (address = 0x11) [default = 0x00]
      16. 9.6.16 Global Faults 2 Register (address = 0x12) [default = 0x00]
      17. 9.6.17 Warnings Register (address = 0x13) [default = 0x20]
      18. 9.6.18 Pin Control Register (address = 0x14) [default = 0x00]
      19. 9.6.19 AC Load Diagnostic Control 1 Register (address = 0x15) [default = 0x00]
      20. 9.6.20 AC Load Diagnostic Control 2 Register (address = 0x16) [default = 0x00]
      21. 9.6.21 AC Load Diagnostic Impedance Report Ch1 through Ch4 Registers (address = 0x17–0x1A) [default = 0x00]
      22. 9.6.22 AC Load Diagnostic Phase Report High Register (address = 0x1B) [default = 0x00]
      23. 9.6.23 AC Load Diagnostic Phase Report Low Register (address = 0x1C) [default = 0x00]
      24. 9.6.24 AC Load Diagnostic STI Report High Register (address = 0x1D) [default = 0x00]
      25. 9.6.25 AC Load Diagnostic STI Report Low Register (address = 0x1E) [default = 0x00]
      26. 9.6.26 Miscellaneous Control 3 Register (address = 0x21) [default = 0x00]
      27. 9.6.27 Clip Control Register (address = 0x22) [default = 0x01]
      28. 9.6.28 Clip Window Register (address = 0x23) [default = 0x14]
      29. 9.6.29 Clip Warning Register (address = 0x24) [default = 0x00]
      30. 9.6.30 ILIMIT Status Register (address = 0x25) [default = 0x00]
      31. 9.6.31 Miscellaneous Control 4 Register (address = 0x26) [default = 0x40]
      32. 9.6.32 Miscellaneous Control 5 Register (address = 0x28) [default = 0x0A]
      33. 9.6.33 Spread-Spectrum Control 1 Register (address = 0x77) [default = 0x00]
      34. 9.6.34 Spread Spectrum Control 2 Register (address = 0x78) [default = 0x3F]
      35. 9.6.35 Spread Spectrum Control 3 Register (address = 0x79) [default = 0x00]
  10. 10Application and Implementation
    1. 10.1 Application Information
      1. 10.1.1 AM-Radio Band Avoidance
      2. 10.1.2 Parallel BTL Operation (PBTL)
      3. 10.1.3 Demodulation Filter Design
      4. 10.1.4 Line Driver Applications
    2. 10.2 Typical Application
      1. 10.2.1 BTL Application
        1. 10.2.1.1 Design Requirements
          1. 10.2.1.1.1 Communication
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Hardware Design
          2. 10.2.1.2.2 Digital Input and the Serial Audio Port
          3. 10.2.1.2.3 Bootstrap Capacitors
          4. 10.2.1.2.4 Output Reconstruction Filter
      2. 10.2.2 PBTL Application
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Electrical Connection of Thermal pad and Heat Sink
      2. 12.1.2 EMI Considerations
      3. 12.1.3 General Guidelines
    2. 12.2 Layout Example
    3. 12.3 Thermal Considerations
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information
Impedance Magnitude Measurement

For load-impedance detection, use the following test procedure:

  1. Set the channels to be tested into the Hi-Z state.
  2. Set the AC_DIAGS_LOOPBACK bit (bit 7 in register 0x16) to '0'.
  3. Apply a full-scale input signal from the DSP for the tested channels with the desired frequency (recommended 10 kHz to 20 kHz).
    Note:

    The device ramps the signal up and down automatically to prevent pops and clicks.

  4. Set the device into the AC diagnostic mode (set bit 3 through bit 0 as needed in register 0x15 to '1' for CH1 to CH4. For PBTL mode, test channel 1 for PBTL12 and channel 3 for PBTL34)
  5. Read back the AC impedance (register 0x17 through register register 0x1A).

    When the test is complete the channel reporting register indicates the status change from the AC diagnostic mode to the Hi-Z state. The detected impedance is stored in the appropriate I2C register.

The hexadecimal register value must be converted to decimal and used to calculate the impedance magnitude using Equation 1.

Equation 1. GUID-29EF82E9-8D7C-4166-BADA-3BEA063A8E2A-low.gif