SBOS833R October   2017  – November 2021 TLV9001 , TLV9002 , TLV9004

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information: TLV9001
    5. 7.5  Thermal Information: TLV9001S
    6. 7.6  Thermal Information: TLV9002
    7. 7.7  Thermal Information: TLV9002S
    8. 7.8  Thermal Information: TLV9004
    9. 7.9  Thermal Information: TLV9004S
    10. 7.10 Electrical Characteristics
    11. 7.11 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Operating Voltage
      2. 8.3.2 Rail-to-Rail Input
      3. 8.3.3 Rail-to-Rail Output
      4. 8.3.4 EMI Rejection
    4. 8.4 Overload Recovery
    5. 8.5 Shutdown
    6. 8.6 Device Functional Modes
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 TLV900x Low-Side, Current Sensing Application
        1. 9.2.1.1 Design Requirements
        2. 9.2.1.2 Detailed Design Procedure
        3. 9.2.1.3 Application Curve
      2. 9.2.2 Single-Supply Photodiode Amplifier
        1. 9.2.2.1 Design Requirements
        2. 9.2.2.2 Detailed Design Procedure
        3. 9.2.2.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 Input and ESD Protection
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Documentation Support
      1. 12.1.1 Related Documentation
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|14
  • DYY|14
  • RUC|14
  • PW|14
  • RTE|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

The transfer function between the output voltage (VOUT), the input current, (IIN) and the reference voltage (VREF) is defined in Equation 5.

Equation 5. GUID-02D0348E-999C-4532-AC74-1A9B9427B4F9-low.gif

Where:

Equation 6. GUID-EC9CAED4-3E9C-4E1C-AEB6-0243EF50262E-low.gif

Set VREF to 100 mV to meet the minimum output voltage level by setting R1 and R2 to meet the required ratio calculated in Equation 7.

Equation 7. GUID-9AE2E33A-63B9-4983-911D-D1C797AD76B6-low.gif

The closest resistor ratio to meet this ratio sets R1 to 11.5 kΩ and R2 to 357 Ω.

The required feedback resistance can be calculated based on the input current and desired output voltage.

Equation 8. GUID-78B72F9F-D303-4F41-8596-6BDA745721A2-low.gif

Calculate the value for the feedback capacitor based on RF and the desired –3-dB bandwidth, (f–3dB) using Equation 9.

Equation 9. GUID-34A1A4C5-B92E-4412-9D38-522EE4F0BB04-low.gif

The minimum op amp bandwidth required for this application is based on the value of RF, CF, and the capacitance on the INx– pin of the TLV9002 which is equal to the sum of the photodiode shunt capacitance, (CPD) the common-mode input capacitance, (CCM) and the differential input capacitance (CD) as Equation 10 shows.

Equation 10. GUID-40927B91-CBAB-4F3B-B0C1-7783ADCEB8DC-low.gif

The minimum op amp bandwidth is calculated in Equation 11.

Equation 11. GUID-AFEE2AD1-DBC1-49DE-9ED8-F4AAC5C2EAC0-low.gif

The 1-MHz bandwidth of the TLV900x meets the minimum bandwidth requirement and remains stable in this application configuration.