SPRS377F September   2008  – June 2014 TMS320C6745 , TMS320C6747

PRODUCTION DATA.  

  1. 1TMS320C6745, TMS320C6747 Fixed- and Floating-Point Digital Signal Processor
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Device Overview
    1. 3.1 Device Characteristics
    2. 3.2 Device Compatibility
    3. 3.3 DSP Subsystem
      1. 3.3.1 C674x DSP CPU Description
      2. 3.3.2 DSP Memory Mapping
        1. 3.3.2.1 External Memories
        2. 3.3.2.2 DSP Internal Memories
        3. 3.3.2.3 C674x CPU
    4. 3.4 Memory Map Summary
      1. Table 3-4 C6747 Top Level Memory Map
      2. Table 3-5 C6745 Top Level Memory Map
    5. 3.5 Pin Assignments
      1. 3.5.1 Pin Map (Bottom View)
    6. 3.6 Terminal Functions
      1. 3.6.1  Device Reset and JTAG
      2. 3.6.2  High-Frequency Oscillator and PLL
      3. 3.6.3  Real-Time Clock and 32-kHz Oscillator
      4. 3.6.4  External Memory Interface A (ASYNC, SDRAM)
      5. 3.6.5  External Memory Interface B (only SDRAM)
      6. 3.6.6  Serial Peripheral Interface Modules (SPI0, SPI1)
      7. 3.6.7  Enhanced Capture/Auxiliary PWM Modules (eCAP0, eCAP1, eCAP2)
      8. 3.6.8  Enhanced Pulse Width Modulators (eHRPWM0, eHRPWM1, eHRPWM2)
      9. 3.6.9  Enhanced Quadrature Encoder Pulse Module (eQEP)
      10. 3.6.10 Boot
      11. 3.6.11 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2)
      12. 3.6.12 Inter-Integrated Circuit Modules (I2C0, I2C1)
      13. 3.6.13 Timers
      14. 3.6.14 Universal Host-Port Interface (UHPI)
      15. 3.6.15 Multichannel Audio Serial Ports (McASP0, McASP1, McASP2)
      16. 3.6.16 Universal Serial Bus Modules (USB0, USB1)
      17. 3.6.17 Ethernet Media Access Controller (EMAC)
      18. 3.6.18 Multimedia Card/Secure Digital (MMC/SD)
      19. 3.6.19 Liquid Crystal Display Controller (LCD)
      20. 3.6.20 General Purpose Input Output (GPIO)
      21. 3.6.21 Reserved and No Connect
      22. 3.6.22 Supply and Ground
      23. 3.6.23 Unused USB0 (USB2.0) and USB1 (USB1.1) Pin Configurations
  4. 4Device Configuration
    1. 4.1 Boot Modes
    2. 4.2 SYSCFG Module
    3. 4.3 Pullup/Pulldown Resistors
  5. 5Device Operating Conditions
    1. 5.1 Absolute Maximum Ratings Over Operating Case Temperature Range (Unless Otherwise Noted)
    2. 5.2 Handling Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Notes on Recommended Power-On Hours (POH)
    5. 5.5 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted)
  6. 6Peripheral Information and Electrical Specifications
    1. 6.1  Parameter Information
      1. 6.1.1 Parameter Information Device-Specific Information
        1. 6.1.1.1 Signal Transition Levels
    2. 6.2  Recommended Clock and Control Signal Transition Behavior
    3. 6.3  Power Supplies
      1. 6.3.1 Power-on Sequence
      2. 6.3.2 Power-off Sequence
    4. 6.4  Reset
      1. 6.4.1 Power-On Reset (POR)
      2. 6.4.2 Warm Reset
      3. 6.4.3 Reset Electrical Data Timings
    5. 6.5  Crystal Oscillator or External Clock Input
    6. 6.6  Clock PLLs
      1. 6.6.1 PLL Device-Specific Information
      2. 6.6.2 Device Clock Generation
      3. 6.6.3 PLL Controller 0 Registers
    7. 6.7  Interrupts
      1. 6.7.1 DSP Interrupts
    8. 6.8  General-Purpose Input/Output (GPIO)
      1. 6.8.1 GPIO Register Description(s)
      2. 6.8.2 GPIO Peripheral Input/Output Electrical Data/Timing
        1. Table 6-9  Timing Requirements for GPIO Inputs (see )
        2. Table 6-10 Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs (see )
      3. 6.8.3 GPIO Peripheral External Interrupts Electrical Data/Timing
        1. Table 6-11 Timing Requirements for External Interrupts (see )
    9. 6.9  EDMA
    10. 6.10 External Memory Interface A (EMIFA)
      1. 6.10.1 EMIFA Asynchronous Memory Support
      2. 6.10.2 EMIFA Synchronous DRAM Memory Support
      3. 6.10.3 EMIFA SDRAM Loading Limitations
      4. 6.10.4 EMIFA Connection Examples
      5. 6.10.5 External Memory Interface A (EMIFA) Registers
      6. 6.10.6 EMIFA Electrical Data/Timing
        1. Table 6-19 EMIFA SDRAM Interface Timing Requirements
        2. Table 6-20 EMIFA SDRAM Interface Switching Characteristics
        3. Table 6-21 EMIFA Asynchronous Memory Timing Requirements
        4. Table 6-22 EMIFA Asynchronous Memory Switching Characteristics
    11. 6.11 External Memory Interface B (EMIFB)
      1. 6.11.1 EMIFB SDRAM Loading Limitations
      2. 6.11.2 Interfacing to SDRAM
      3. 6.11.3 EMIFB Electrical Data/Timing
        1. Table 6-26 EMIFB SDRAM Interface Timing Requirements
        2. Table 6-27 EMIFB SDRAM Interface Switching Characteristics for Commercial (Default) Temperature Range
        3. Table 6-28 EMIFB SDRAM Interface Switching Characteristics for Industrial, Extended, and Automotive Temperature Ranges
    12. 6.12 Memory Protection Units
    13. 6.13 MMC / SD / SDIO (MMCSD)
      1. 6.13.1 MMCSD Peripheral Description
      2. 6.13.2 MMCSD Peripheral Register Description(s)
      3. 6.13.3 MMC/SD Electrical Data/Timing
        1. Table 6-32 Timing Requirements for MMC/SD Module (see and )
        2. Table 6-33 Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module (see through )
    14. 6.14 Ethernet Media Access Controller (EMAC)
      1. 6.14.1 EMAC Peripheral Register Description(s)
    15. 6.15 Management Data Input/Output (MDIO)
      1. 6.15.1 MDIO Registers
      2. 6.15.2 Management Data Input/Output (MDIO) Electrical Data/Timing
        1. Table 6-41 Timing Requirements for MDIO Input (see and )
        2. Table 6-42 Switching Characteristics Over Recommended Operating Conditions for MDIO Output (see )
    16. 6.16 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2)
      1. 6.16.1 McASP Peripheral Registers Description(s)
      2. 6.16.2 McASP Electrical Data/Timing
        1. 6.16.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing
          1. Table 6-47 McASP0 Timing Requirements
          2. Table 6-48 McASP0 Switching Characteristics
        2. 6.16.2.2 Multichannel Audio Serial Port 1 (McASP1) Timing
          1. Table 6-49 McASP1 Timing Requirements
          2. Table 6-50 McASP1 Switching Characteristics
        3. 6.16.2.3 Multichannel Audio Serial Port 2 (McASP2) Timing
          1. Table 6-51 McASP2 Timing Requirements
          2. Table 6-52 McASP2 Switching Characteristics
    17. 6.17 Serial Peripheral Interface Ports (SPI0, SPI1)
      1. 6.17.1 SPI Peripheral Registers Description(s)
      2. 6.17.2 SPI Electrical Data/Timing
        1. 6.17.2.1 Serial Peripheral Interface (SPI) Timing
          1. Table 6-54 General Timing Requirements for SPI0 Master Modes
          2. Table 6-55 General Timing Requirements for SPI0 Slave Modes
          3. Table 6-56 Additional SPI0 Master Timings, 4-Pin Enable Option
          4. Table 6-57 Additional SPI0 Master Timings, 4-Pin Chip Select Option
          5. Table 6-58 Additional SPI0 Master Timings, 5-Pin Option
          6. Table 6-59 Additional SPI0 Slave Timings, 4-Pin Enable Option
          7. Table 6-60 Additional SPI0 Slave Timings, 4-Pin Chip Select Option
          8. Table 6-61 Additional SPI0 Slave Timings, 5-Pin Option
          9. Table 6-62 General Timing Requirements for SPI1 Master Modes
          10. Table 6-63 General Timing Requirements for SPI1 Slave Modes
          11. Table 6-64 Additional SPI1 Master Timings, 4-Pin Enable Option
          12. Table 6-65 Additional SPI1 Master Timings, 4-Pin Chip Select Option
          13. Table 6-66 Additional SPI1 Master Timings, 5-Pin Option
          14. Table 6-67 Additional SPI1 Slave Timings, 4-Pin Enable Option
          15. Table 6-68 Additional SPI1 Slave Timings, 4-Pin Chip Select Option
          16. Table 6-69 Additional SPI1 Slave Timings, 5-Pin Option
    18. 6.18 Enhanced Capture (eCAP) Peripheral
      1. Table 6-71 Enhanced Capture (eCAP) Timing Requirement
      2. Table 6-72 eCAP Switching Characteristics
    19. 6.19 Enhanced Quadrature Encoder (eQEP) Peripheral
      1. Table 6-74 Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements
      2. Table 6-75 eQEP Switching Characteristics
    20. 6.20 Enhanced High-Resolution Pulse-Width Modulator (eHRPWM)
      1. 6.20.1 Enhanced Pulse Width Modulator (eHRPWM) Timing
        1. Table 6-77 eHRPWM Timing Requirements
        2. Table 6-78 eHRPWM Switching Characteristics
      2. 6.20.2 Trip-Zone Input Timing
    21. 6.21 LCD Controller
      1. 6.21.1 LCD Interface Display Driver (LIDD Mode)
      2. 6.21.2 LCD Raster Mode
        1. Table 6-84 LCD Raster Mode Timing
    22. 6.22 Timers
      1. 6.22.1 Timer Electrical Data/Timing
        1. Table 6-86 Timing Requirements for Timer Input (see )
        2. Table 6-87 Switching Characteristics Over Recommended Operating Conditions for Timer Output
    23. 6.23 Inter-Integrated Circuit Serial Ports (I2C0, I2C1)
      1. 6.23.1 I2C Device-Specific Information
      2. 6.23.2 I2C Peripheral Registers Description(s)
      3. 6.23.3 I2C Electrical Data/Timing
        1. 6.23.3.1 Inter-Integrated Circuit (I2C) Timing
          1. Table 6-89 I2C Input Timing Requirements
          2. Table 6-90 I2C Switching Characteristics
    24. 6.24 Universal Asynchronous Receiver/Transmitter (UART)
      1. 6.24.1 UART Peripheral Registers Description(s)
      2. 6.24.2 UART Electrical Data/Timing
        1. Table 6-92 Timing Requirements for UARTx Receive (see )
        2. Table 6-93 Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit (see )
    25. 6.25 USB1 Host Controller Registers (USB1.1 OHCI)
      1. Table 6-95 Switching Characteristics Over Recommended Operating Conditions for USB1
      2. 6.25.1     USB1 Unused Signal Configuration
    26. 6.26 USB0 OTG (USB2.0 OTG)
      1. 6.26.1 USB2.0 Electrical Data/Timing
        1. Table 6-97 Switching Characteristics Over Recommended Operating Conditions for USB2.0 (see )
      2. 6.26.2 USB0 Unused Signal Configuration
    27. 6.27 Host-Port Interface (UHPI)
      1. 6.27.1 HPI Device-Specific Information
      2. 6.27.2 HPI Peripheral Register Description(s)
      3. 6.27.3 HPI Electrical Data/Timing
        1. Table 6-99  Timing Requirements for Host-Port Interface Cycles
        2. Table 6-100 Switching Characteristics for Host-Port Interface Cycles
    28. 6.28 Power and Sleep Controller (PSC)
      1. 6.28.1 Power Domain and Module Topology
        1. 6.28.1.1 Power Domain States
        2. 6.28.1.2 Module States
    29. 6.29 Programmable Real-Time Unit Subsystem (PRUSS)
      1. 6.29.1 PRUSS Register Descriptions
    30. 6.30 Emulation Logic
      1. 6.30.1 JTAG Port Description
      2. 6.30.2 Scan Chain Configuration Parameters
      3. 6.30.3 JTAG 1149.1 Boundary Scan Considerations
    31. 6.31 IEEE 1149.1 JTAG
      1. 6.31.1 JTAG Peripheral Register Description(s) – JTAG ID Register (DEVIDR0)
      2. 6.31.2 JTAG Test-Port Electrical Data/Timing
        1. Table 6-115 Timing Requirements for JTAG Test Port (see )
        2. Table 6-116 Switching Characteristics Over Recommended Operating Conditions for JTAG Test Port (see )
    32. 6.32 Real Time Clock (RTC)
      1. 6.32.1 Clock Source
      2. 6.32.2 Real-Time Clock Registers
  7. 7Device and Documentation Support
    1. 7.1 Device Support
      1. 7.1.1 Development Support
      2. 7.1.2 Device and Development-Support Tool Nomenclature
    2. 7.2 Documentation Support
    3. 7.3 Support Resources
    4. 7.4 Related Links
    5. 7.5 Trademarks
    6. 7.6 Electrostatic Discharge Caution
    7. 7.7 Glossary
  8. 8Mechanical Packaging and Orderable Information
    1. 8.1 Thermal Data for ZKB
    2. 8.2 Thermal Data for PTP
    3. 8.3 Supplementary Information About the 176-pin PTP PowerPAD™ Package
      1. 8.3.1 Standoff Height
      2. 8.3.2 PowerPAD™ PCB Footprint
    4. 8.4 Packaging Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • ZKB|256
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Pullup/Pulldown Resistors

Proper board design should ensure that input pins to the device always be at a valid logic level and not floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external pullup/pulldown resistors.

An external pullup/pulldown resistor needs to be used in the following situations:

  • Boot and Configuration Pins: If the pin is both routed out and 3-stated (not driven), an external pullup/pulldown resistor is strongly recommended, even if the IPU/IPD matches the desired value/state.
  • Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external pullup/pulldown resistor to pull the signal to the opposite rail.

For the boot and configuration pins, if they are both routed out and 3-stated (not driven), it is strongly recommended that an external pullup/pulldown resistor be implemented. Although, internal pullup/pulldown resistors exist on these pins and they may match the desired configuration value, providing external connectivity can help ensure that valid logic levels are latched on these device boot and configuration pins. In addition, applying external pullup/pulldown resistors on the boot and configuration pins adds convenience to the user in debugging and flexibility in switching operating modes.

Tips for choosing an external pullup/pulldown resistor:

  • Consider the total amount of current that may pass through the pullup or pulldown resistor. Make sure to include the leakage currents of all the devices connected to the net, as well as any internal pullup or pulldown resistors.
  • Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of the limiting device; which, by definition, have margin to the VIL and VIH levels.
  • Select a pullup/pulldown resistor with the largest possible value; but, which can still ensure that the net will reach the target pulled value when maximum current from all devices on the net is flowing through the resistor. The current to be considered includes leakage current plus, any other internal and external pullup/pulldown resistors on the net.
  • For bidirectional nets, there is an additional consideration which sets a lower limit on the resistance value of the external resistor. Verify that the resistance is small enough that the weakest output buffer can drive the net to the opposite logic level (including margin).
  • Remember to include tolerances when selecting the resistor value.
  • For pullup resistors, also remember to include tolerances on the IO supply rail.
  • For most systems, a 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should confirm this resistor value is correct for their specific application.
  • For most systems, a 20-kΩ resistor can be used to compliment the IPU/IPD on the boot and configuration pins while meeting the above criteria. Users should confirm this resistor value is correct for their specific application.
  • For more detailed information on input current (II), and the low-/high-level input voltages (VIL and VIH) for the device, see Section 5.3, Recommended Operating Conditions.
  • For the internal pullup/pulldown resistors for all device pins, see the peripheral/system-specific terminal functions table.