SLAS997B March   2014  – January 2015 TPA6166A2

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Electrical Characteristics, Audio Amplifiers
    7. 6.7 Electrical Characteristics, Mic Preamplifier and Bias
    8. 6.8 Timing Requirements
    9. 6.9 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 I2C Interface
        1. 7.3.1.1 Single and Multiple Byte Transfers
        2. 7.3.1.2 Single-Byte Write
        3. 7.3.1.3 Multiple-Byte Write and Incremental Multiple-Byte Write
        4. 7.3.1.4 Single-Byte Read
        5. 7.3.1.5 Multiple-Byte Read
      2. 7.3.2 Accessory Detection
      3. 7.3.3 Audio Playback Channel
        1. 7.3.3.1 Class-G Headphone Amplifier
          1. 7.3.3.1.1 Headphone Charge Pump
        2. 7.3.3.2 Out-of-Band and Input RF Noise Rejection
      4. 7.3.4 Mic Channel
      5. 7.3.5 Button Press Detection
    4. 7.4 Device Functional Modes
      1. 7.4.1 I2C Options
      2. 7.4.2 System in Shutdown Mode
      3. 7.4.3 System in Sleep Mode
        1. 7.4.3.1 Accessory Not Inserted
        2. 7.4.3.2 Accessory Inserted
        3. 7.4.3.3 Button Detection During Sleep Mode
      4. 7.4.4 System in Wake-Up Mode
        1. 7.4.4.1 Accessory Not Inserted
        2. 7.4.4.2 Accessory Inserted
        3. 7.4.4.3 Audio Not Playing or Not in Voice Call
        4. 7.4.4.4 High Impedance Line Out Load
        5. 7.4.4.5 Button Detection
    5. 7.5 Register Maps
      1. 7.5.1 Register Functional Overview
      2. 7.5.2 Initialization
        1. 7.5.2.1 Reserved Registers
        2. 7.5.2.2 Fixed Registers
        3. 7.5.2.3 Other Registers
      3. 7.5.3 Typical Use Case Modes
      4. 7.5.4 Recommended Software Flow Chart
      5. 7.5.5 Register Map Summary
      6. 7.5.6 Detailed Register Descriptions
        1. 7.5.6.1  Register 0x00: Config and Device Status Register 1
        2. 7.5.6.2  Register 0x01: Config and Device Status Register 2
        3. 7.5.6.3  Register 0x02: Config and Device Status Register 2
        4. 7.5.6.4  Register 0x03: Reserved Register
        5. 7.5.6.5  Register 0x04: Interrupt Mask Register 1
        6. 7.5.6.6  Register 0x05: Interrupt Mask Register 2
        7. 7.5.6.7  Register 0x06: Reserved Register
        8. 7.5.6.8  Register 0x07: Headphone Volume Register 1
        9. 7.5.6.9  Register 0x08: Headphone Volume Control Register 2
        10. 7.5.6.10 Register 0x09: Microphone Bias Control Register
        11. 7.5.6.11 Register 0x0a: Reserved
        12. 7.5.6.12 Register 0x0b: Revision ID Register
        13. 7.5.6.13 Register 0x0c: Reserved Register
        14. 7.5.6.14 Registers 0x0d to 0x10: Reserved Registers
        15. 7.5.6.15 Register 0x11: Reserved
        16. 7.5.6.16 Register 0x12: Reserved
        17. 7.5.6.17 Register 0x13: Reserved
        18. 7.5.6.18 Register 0x14: Reserved Register
        19. 7.5.6.19 Register 0x15: Keyscan Debounce Register
        20. 7.5.6.20 Register 0x16: Keyscan Delay Register
        21. 7.5.6.21 Register 0x17: Passive Multi Button Keyscan Data Register
        22. 7.5.6.22 Register 0x18: Jack Detect Test Hardware Settings
        23. 7.5.6.23 Register 0x19:State Register
        24. 7.5.6.24 Register 0x1a: Jack Detect Test Hardware Settings
        25. 7.5.6.25 Registers 0x1b: Reserved
        26. 7.5.6.26 Register 0x1c: Clock Control
        27. 7.5.6.27 Register 0x1d: Enable Register 1
        28. 7.5.6.28 Register 0x1e: Enable Register 2
        29. 7.5.6.29 Register 0x1F: Reserved
        30. 7.5.6.30 Register 0x66: Clock Flex Register
        31. 7.5.6.31 Register 0x6F: Clock Set Register
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Charge Pump Capacitors
        2. 8.2.2.2 Audio Input ac Coupling Capacitors
        3. 8.2.2.3 Suggested Output EMI Filter
      3. 8.2.3 Application Curve
  9. Power Supply Recommendations
    1. 9.1 Decoupling Capacitors
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
      1. 10.2.1 Pad Sizing
  11. 11Device and Documentation Support
    1. 11.1 Development Support
    2. 11.2 Trademarks
    3. 11.3 Electrostatic Discharge Caution
    4. 11.4 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

This section describes a typical application of TPA6166A2 with a standard audio jack with battery voltage level supply. The circuit detects what kind of device is plugged into the jack and delivers excellent audio quality.

8.2 Typical Application

Figure 32 shows a typical application circuit for the TPA6166A2 with a 5-terminal audio jack. Accessory Detection describes all the accessory jack configurations the TPA6166A2 automatically detects.

Typ_Apps_Circuit_los796.gifFigure 32. Typical Application Circuit

8.2.1 Design Requirements

Table 7. Design Parameters

DESIGN PARAMETERS VALUE
VDD Supply voltage 1.7 V to 1.9 V
MICVDD Microphone supply voltage 2.4 V to 3.6 V

8.2.2 Detailed Design Procedure

8.2.2.1 Charge Pump Capacitors

The CPVDD and CPVSS capacitor must be at least equal in value to the flying capacitor to allow maximum charge transfer. Use low ESR (example: < 20 mΩ at 1.3 MHz) ceramic capacitors to maximize charge pump efficiency. X5R-type capacitors or better are required for best performance. Typical values are 1 µF to 2.2 µF for the charge pump capacitors.

Charge pump capacitors should be able to handle up to 2 V during normal operation. During IEC ESD strike on jack terminals, voltage on these capacitors can go as high as 12 V for 30 to 40 ns. Capacitors rated for 6.3 V or higher can typically handle such voltages for short durations without getting damaged.

8.2.2.2 Audio Input ac Coupling Capacitors

Input coupling capacitors block any dc bias from the audio source and ensure maximum dynamic range. Input coupling capacitors also minimize TPA6166A2 turnon pop to an inaudible level. The input capacitors are in series with TPA6166A2 internal input resistors, creating a high-pass filter. Equation 2 calculates the high-pass filter corner frequency. The TPA6166A2 typical input impedance, RIN, is 20 kΩ.

Equation 2. eq_08_los598.gif

For a given high-pass cutoff frequency, the minimum input coupling capacitor is:

Equation 3. eq_09_los598.gif

Example: Select input coupling capacitor values to achieve a 20 Hz high-pass corner frequency. Equation 3 shows the input coupling capacitors must be at least 0.4 μF. Choose a 0.47-μF standard value capacitor for each TPA6166A2 input. Use X5R-type or better capacitors for best performance.

8.2.2.3 Suggested Output EMI Filter

To prevent noise getting radiated from headphone, EMI filters are often included on terminals connected to the Jack. Figure 33 illustrates typical connection diagram of EMI filter implemented using ‘pi’ configuration.

tpa6166_EMI_filter_EVM_L.gifFigure 33. EMI Filter

High-frequency impedance of RF beads in range of 100 MHz can impact IEC ESD performance on TPA6166A2 jack outputs (LOUT, PIN2_ROUT, PIN3, and PIN4). Higher impedances change the waveform during IEC strike to make it wider, which subjects internal circuit to stress for longer duration. Use RF beads which are equal to or less than 22-Ω impedance at 100 MHz.

8.2.3 Application Curve

The high quality and low distortion of the TPA6166A2 mic preamplifier is shown in Figure 34.

Fig15_MIC_THDN_vs_Frequency_12dB.gifFigure 34. Mic Preamplifier Total Harmonic Distortion + Noise vs Frequency