SLVSHK6 March   2025 TPS61381-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 I2C Timing Characteristics
    7. 5.7 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 VCC Power Supply and UVLO Logic
      2. 6.3.2 Enable or Shutdown
      3. 6.3.3 Device Operating Modes and Control Logic
      4. 6.3.4 Configured as Status Indicatior
      5. 6.3.5 Thermal Shutdown
    4. 6.4 Charger Feature Description
      1. 6.4.1 Charger Enable
      2. 6.4.2 LDO Charger
      3. 6.4.3 NiMH Battery Charging Profile
      4. 6.4.4 Lithium Battery Charging Profile
      5. 6.4.5 Super Capacitor Charging Profile
      6. 6.4.6 Battery Cold, Hot Temperature (TS Pin)
      7. 6.4.7 Charger Protection and Fault Condition Indication
    5. 6.5 Boost Feature Description
      1. 6.5.1 Enable and Start up
        1. 6.5.1.1 Automatic Transition into Boost Mode
        2. 6.5.1.2 Manual Transition into Boost Mode
      2. 6.5.2 Down Mode
      3. 6.5.3 Output Short- to-Ground Protection
      4. 6.5.4 Boost Control Loop
      5. 6.5.5 Current Limit Operation
      6. 6.5.6 Functional Modes at Light Load
        1. 6.5.6.1 Auto PFM Mode
        2. 6.5.6.2 Forced PWM Mode
      7. 6.5.7 Duty Cycle Limitation
      8. 6.5.8 BUB Voltage Loop
      9. 6.5.9 Spread Spectrum
    6. 6.6 Battery State-of-Health (SOH) Detection Feature Description
      1. 6.6.1 SOH Mode Operation
      2. 6.6.2 Multi-Signal Output in AVI Pin
      3. 6.6.3 Calculate Impedance of BUB
    7. 6.7 I2C Serial Interface
      1. 6.7.1 Data Validity
      2. 6.7.2 START and STOP Conditions
      3. 6.7.3 Byte Format
      4. 6.7.4 Acknowledge (ACK) and Not Acknowledge (NACK)
      5. 6.7.5 Slave Address and Data Direction Bit
      6. 6.7.6 Single Read and Write
      7. 6.7.7 Multi-Read and Multi-Write
  8. Register Maps
    1. 7.1  Register 00H: CHIP_ID
    2. 7.2  Register 01H: BOOST_SET1
    3. 7.3  Register 02H: BOOST_SET2
    4. 7.4  Register 03H: BOOST_SET3
    5. 7.5  Register 04H: CHGR_SET1
    6. 7.6  Register 05H: CHGR_SET2
    7. 7.7  Register 06H: CHGR_SET3
    8. 7.8  Register 07H: CHGR_SET4
    9. 7.9  Register 08H: CHGR_STATUS
    10. 7.10 Register 09H: SOH_SET1
    11. 7.11 Register 0AH: SOH_SET2
    12. 7.12 Register 0BH: CONTROL_STATUS
    13. 7.13 Register 0CH: FAULT_CONDITION
    14. 7.14 Register 0DH: STATUS_PIN_SET
    15. 7.15 Register 0EH: SW_RST
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Selecting the External MOSFET
        2. 8.2.2.2 Inductor Selection
        3. 8.2.2.3 Capacitor in Back-Up Battery Side
        4. 8.2.2.4 Selecting the Output Capacitor
        5. 8.2.2.5 Loop Stability and Compensation Design
          1. 8.2.2.5.1 Small Signal Analysis
          2. 8.2.2.5.2 Loop Compensation Design
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Capacitor in Back-Up Battery Side

The capacitance in the back-up battery side affects BUB loop stability. The effective capacitance should be between 5μF to 10μF BUB loop functions needs to be applied. If BUB loop function is not required, then the capacitance in BUB side can be big without limit.

Care must be taken when evaluating a ceramic capacitor’s effective capacitance. For ceramic capacitors, the derating under dc bias voltage, aging, and ac signal should be taken into consideration. Taking Murata GCM21BR71C475KA73K as an example, the capacitor's effective capacitance reduces by 56% when 8V DC voltage is applied.

If back up battery is connected to the IC through long cable, TI recommend adding extra 100-200uF electrolytic capacitors on BUB side. This capacitor helps supress LC ringing caused by parasite inductance on back up battery cable. Note that the electrolytic capacitor cannot replace ceramic capacitor and 5μF to 10μF ceramic capacitor still needs to be placed near the IC.