SLVSGG8 November   2023 TPS6287B10 , TPS6287B25

PRODMIX  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Options
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 I2C Interface Timing Characteristics
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Fixed-Frequency DCS-Control Topology
      2. 8.3.2  Forced-PWM and Power-Save Modes
      3. 8.3.3  Transient Non-Synchronous Mode (optional)
      4. 8.3.4  Precise Enable
      5. 8.3.5  Start-Up
      6. 8.3.6  Output Voltage Setting
        1. 8.3.6.1 Output Voltage Range
        2. 8.3.6.2 Output Voltage Setpoint
        3. 8.3.6.3 Non-Default Output Voltage Setpoint
        4. 8.3.6.4 Dynamic Voltage Scaling
        5. 8.3.6.5 Droop Compensation
      7. 8.3.7  Compensation (COMP)
      8. 8.3.8  Mode Selection / Clock Synchronization (MODE/SYNC)
      9. 8.3.9  Spread Spectrum Clocking (SSC)
      10. 8.3.10 Output Discharge
      11. 8.3.11 Undervoltage Lockout (UVLO)
      12. 8.3.12 Overvoltage Lockout (OVLO)
      13. 8.3.13 Overcurrent Protection
        1. 8.3.13.1 Cycle-by-Cycle Current Limiting
        2. 8.3.13.2 Hiccup Mode
        3. 8.3.13.3 Current-Limit Mode
      14. 8.3.14 Power Good (PG)
        1. 8.3.14.1 Standalone / Primary Device Behavior
        2. 8.3.14.2 Secondary Device Behavior
      15. 8.3.15 Remote Sense
      16. 8.3.16 Thermal Warning and Shutdown
      17. 8.3.17 Stacked Operation
    4. 8.4 Device Functional Modes
      1. 8.4.1 Power-On Reset
      2. 8.4.2 Undervoltage Lockout
      3. 8.4.3 Standby
      4. 8.4.4 On
    5. 8.5 Programming
      1. 8.5.1 Serial Interface Description
      2. 8.5.2 Standard-, Fast-, Fast-Mode Plus Protocol
      3. 8.5.3 HS-Mode Protocol
      4. 8.5.4 I2C Update Sequence
      5. 8.5.5 I2C Register Reset
      6. 8.5.6 Dynamic Voltage Scaling (DVS)
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Selecting the Input Capacitors
        3. 9.2.2.3 Selecting the Compensation Resistor
        4. 9.2.2.4 Selecting the Output Capacitors
        5. 9.2.2.5 Selecting the Compensation Capacitor CC
        6. 9.2.2.6 Selecting the Compensation Capacitor CC2
      3. 9.2.3 Application Curves
    3. 9.3 Typical Application - TPS6287BxV Devices
      1. 9.3.1 Design Requirements for TPS6287BxV
    4. 9.4 Typical Application Using Two TPS6287B25 in a Stacked Configuration
      1. 9.4.1 Design Requirements For Two Stacked Devices
      2. 9.4.2 Detailed Design Procedure
        1. 9.4.2.1 Selecting the Compensation Resistor
        2. 9.4.2.2 Selecting the Output Capacitors
        3. 9.4.2.3 Selecting the Compensation Capacitor CC
      3. 9.4.3 Application Curves for Two Stacked Devices
    5. 9.5 Typical Application Using Three TPS6287B25 in a Stacked Configuration
      1. 9.5.1 Application Curves
    6. 9.6 Power Supply Recommendations
    7. 9.7 Layout
      1. 9.7.1 Layout Guidelines
      2. 9.7.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Device Registers
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Inductor Selection

The TPS6287Bx devices have been optimized for inductors in the the range 100 nH to 200 nH. If the transient response of the converter is limited by the slew rate of the current in the inductor, using a smaller inductor can improve performance. However, the output ripple current increases as the value of the inductor decreases, and higher output current ripple generates higher output voltage ripple, which adds to the transient over- or undershoot. The optimum configuration for a given application is a trade-off between a number of parameters. We recommend a starting value of 105 nH for typical applications.

The inductor ripple current is given by:

Equation 6. IL(PP)=VOUTVINVIN  VOUTL×fsw
Equation 7. IL(PP)=0.753.33.3 0.75105×109×1.5×106A =3.68 A
Table 9-2 lists a number of inductors suitable for use with this application. This list is not exhaustive, however, and other inductors from other manufacturers may also be suitable.

Table 9-2 Typical Inductors
PART NUMBERINDUCTANCE [µH]CURRENT [A]

DC RESISTANCE

DIMENSIONS [LxWxH] mmMANUFACTURER
XEL4030-101ME0.10 µH, ±20%

22

1.5 mΩ4 × 4 × 3.2Coilcraft
7443020100.105 µH

30

0.235 mΩ7 × 7 × 4.8

Wurth

XGL5030-161ME0.16 µH

25

1.3 mΩ5.3 × 5.5 × 3Coilcraft
CLT32-R110.110 µH201 mΩ2.5 × 3.2 × 2.5TDK