SBVS397A September   2023  – November 2023 TPS7B4256-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Tracker Output Voltage (VOUT)
        1. 6.3.1.1 Output Voltage Equal to Reference Voltage
        2. 6.3.1.2 Output Voltage Less Than the Reference Voltage
        3. 6.3.1.3 Output Voltage Larger Than the Reference Voltage
      2. 6.3.2 Reverse Current Protection
      3. 6.3.3 Undervoltage Lockout
      4. 6.3.4 Thermal Protection
      5. 6.3.5 Current Limit
      6. 6.3.6 Output Short to Battery
      7. 6.3.7 Tracking Regulator With an Enable Circuit
    4. 6.4 Device Functional Modes
      1. 6.4.1 Normal Operation
      2. 6.4.2 Dropout Operation
      3. 6.4.3 Operation With VIN < 3 V
      4. 6.4.4 Disable With ADJ/EN Control
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Dropout Voltage
      2. 7.1.2 Reverse Current
    2. 7.2 Typical Application
      1. 7.2.1 Design Requirements
      2. 7.2.2 Detailed Design Procedure
        1. 7.2.2.1 Input and Output Capacitor Selection
        2. 7.2.2.2 Feedback Resistor Selection
        3. 7.2.2.3 Feedforward Capacitor
      3. 7.2.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
        1. 7.4.1.1 Package Mounting
        2. 7.4.1.2 Board Layout Recommendations to Improve PSRR and Noise Performance
        3. 7.4.1.3 Power Dissipation and Thermal Considerations
        4. 7.4.1.4 Thermal Performance Versus Copper Area
        5. 7.4.1.5 Layout Examples
  9. Device and Documentation Support
    1. 8.1 Device Support
      1. 8.1.1 Device Nomenclature
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Dropout Operation

If the input voltage is lower than the nominal output voltage plus the specified dropout voltage, but all other conditions are met for normal operation, the device operates in dropout mode. In this mode, the output voltage tracks the input voltage. During this mode, the transient performance of the device becomes significantly degraded because the pass transistor is in the ohmic or triode region, and acts as a switch. Line or load transients in dropout can result in large output-voltage deviations.

When the device is in a steady dropout state (defined as when the device is in dropout, VIN < VOUT(NOM) + VDO, directly after being in a normal regulation state, but not during start up), the pass transistor is driven into the ohmic or triode region. When the input voltage returns to a value greater than or equal to the nominal output voltage plus the dropout voltage (VOUT(NOM) + VDO), the output voltage can overshoot for a short period of time while the device pulls the pass transistor back into the saturation region.