SLUSFF2C September   2023  – December 2025 UCG28824 , UCG28826 , UCG28828

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Detailed Pin Descriptions
      1. 7.3.1  HV - High Voltage Input
      2. 7.3.2  SW - Switch Node
      3. 7.3.3  GND – Ground Return
      4. 7.3.4  FLT - External Overtemperature Fault
      5. 7.3.5  FB ­­– Feedback
      6. 7.3.6  TR - Turns Ratio
      7. 7.3.7  IPK - Peak Current and Dithering
      8. 7.3.8  FCL - Frequency Clamp and Fault Response
      9. 7.3.9  CDX - CCM, Drive Strength, and X-cap Discharge
      10. 7.3.10 VCC - Input Bias
    4. 7.4 Feature Description
      1. 7.4.1  Self Bias and Auxless Sensing
      2. 7.4.2  Control Law
        1. 7.4.2.1 Valley Switching
        2. 7.4.2.2 Frequency Foldback
        3. 7.4.2.3 Burst Mode
        4. 7.4.2.4 Continuous Conduction Mode (CCM)
      3. 7.4.3  GaN HEMT Switching Capability
      4. 7.4.4  Soft Start
      5. 7.4.5  Frequency Clamp
      6. 7.4.6  Frequency Dithering
      7. 7.4.7  Slew Rate Control
      8. 7.4.8  Transient Peak Power Capability
      9. 7.4.9  X-Cap Discharge
      10. 7.4.10 Fault Protections
        1. 7.4.10.1 Brownout Protection
        2. 7.4.10.2 Short-Circuit Protection
        3. 7.4.10.3 Output Overvoltage Protection
        4. 7.4.10.4 Overpower Protection (OPP, LPS)
        5. 7.4.10.5 Overtemperature Protection
        6. 7.4.10.6 Open FB Protection
        7. 7.4.10.7 Error Codes for Protections
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Input Bulk Capacitor
        2. 8.2.2.2 Transformer Primary Inductance and Turns Ratio
        3. 8.2.2.3 Output Capacitor
        4. 8.2.2.4 Selection Resistors
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • REZ|12
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Transformer Primary Inductance and Turns Ratio

The transformer turns ratio is limited by the primary GaN HEMT maximum drain-source voltage (VDS) rating and determines the secondary SR FET voltage rating and switching losses. The turns ratio is chosen as 6 for this design to reduce the snubber losses and improve efficiency. The UCG2882x supports turns ratio in the range from 6 to 7.875 for 20V output.

The transformer primary inductance determines the switching frequency through the range of flyback converter operation using UCG2882x. For this design, the switching frequency is assumed at half of the maximum limit of 140kHz, which is 70kHz at low line input 90VAC. At this input voltage and full load 65W, the converter operates in 1st valley QR mode and the demagnetization ringing duration is ignored to give duty cycle:

Equation 6. D max = NV OUT V IN + NV OUT

where turns ratio N is given by the following:

Equation 7. N = N P N S

From Equation 6 and Equation 7, the primary inductance is given by the following:

Equation 8. L M = V BULKmin 2 × D max 2 × T SW × η 2 P OUTmax

Based on turns ratio equal to 6, the secondary SR FET voltage is calculated using Equation 9 and current rating is calculated using Equation 10. With a 25% margin, use an SR FET of at least 100V, and a 24A rating.

Equation 9. V SRFET = 2 V ACmax N + V OUT
Equation 10. I SEC , PK = N × I PRI , PK