JAJSSK4 December   2023 TPSM64406

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 System Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range (VIN1, VIN2)
      2. 7.3.2  Enable EN Pin and Use as VIN UVLO
      3. 7.3.3  CONFIG Device Configuration Pin
      4. 7.3.4  Adjustable Switching Frequency
      5. 7.3.5  Spread Spectrum
      6. 7.3.6  Adjustable Output Voltage (FB)
      7. 7.3.7  Input Capacitors
      8. 7.3.8  Output Capacitors
      9. 7.3.9  SYNC Allows Clock Synchronization and Mode Selection
      10. 7.3.10 Power-Good Output Voltage Monitoring
      11. 7.3.11 Bias Supply Regulator (VCC, VOSNS)
      12. 7.3.12 Overcurrent Protection (OCP)
      13. 7.3.13 Thermal Shutdown
    4. 7.4 Device Functional Modes
      1. 7.4.1 Shutdown Mode
      2. 7.4.2 Standby Mode
      3. 7.4.3 Active Mode
  9. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Design 1 – High-efficiency Dual Output 5 V at 3 A, 3.3 V at 3 A, Synchronous Buck Regulator
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Output Voltage Setpoint
          2. 8.2.1.2.2 Switching Frequency Selection
          3. 8.2.1.2.3 Input Capacitor Selection
          4. 8.2.1.2.4 Output Capacitor Selection
          5. 8.2.1.2.5 Other Considerations
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Design 2 – High-efficiency 6 A Synchronous Buck Regulator for Industrial Applications
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Output Voltage Setpoint
          2. 8.2.2.2.2 Switching Frequency Selection
          3. 8.2.2.2.3 Input Capacitor Selection
          4. 8.2.2.2.4 Output Capacitor Selection
          5. 8.2.2.2.5 Other Connections
        3. 8.2.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Thermal Design and Layout
      2. 8.4.2 Layout Example
  10. Custom Design With WEBENCH® Tools
  11. 10Device and Documentation Support
    1. 10.1 Device Support
      1. 10.1.1 サード・パーティ製品に関する免責事項
      2. 10.1.2 Development Support
        1. 10.1.2.1 Custom Design With WEBENCH® Tools
    2. 10.2 Documentation Support
      1. 10.2.1 Related Documentation
    3. 10.3 ドキュメントの更新通知を受け取る方法
    4. 10.4 サポート・リソース
    5. 10.5 Trademarks
    6. 10.6 静電気放電に関する注意事項
    7. 10.7 用語集
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Mechanical Data

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

SYNC Allows Clock Synchronization and Mode Selection

The SYNC pin can be used to select forced pulse width modulation (FPWM) or pulse frequency modulation (PFM). In FPWM the switching frequency remains constant at lighter output currents. In PFM the low-side FET is turned off when the inductor current goes negative and the frequency is reduced to improve efficiency under light-load conditions. Connect SYNC to AGND to enable PFM. Connect SYNC to VCC to operate the TPSM6440X in FPWM mode with continuous conduction at light loads.

The SYNC pin can also be used to synchronize the internal oscillator to an external clock. When synchronized to an external clock, the TPSM6440X operates in FPWM. The internal oscillator can be synchronized to a positive edge into the SYNC pin. The coupled edge voltage at the SYNC pin must exceed the SYNC amplitude threshold of VSYNCDH to trip the internal synchronization pulse detector. The minimum SYNC rising pulse and falling pulse durations must be longer than tPULSE_H and tPULSE_L respectively. The TPSM6440X switching action can be synchronized to an external clock from 200 kHz to 2.2 MHz. When synchronizing to an external clock, the RT pin must be used to set the internal frequency to a value close to that of the external clock. This action prevents large frequency changes in the event of loss of synchronization. This action is also used to set the slope compensation for secondary devices.

In single-output two-phase operation, the PG2/SYNC-OUT terminal of the primary can be left floating as clock information is shared internally.

In single-output four-phase operation, the PG2/SYNC-OUT terminal of the primary must be connected to the SYNC pin of the secondary to clock all four phases 90 degrees out of phase.

In single-output six-phase operation, the PG2/SYNC-OUT terminal of the primary must be connected to the SYNC pin of the secondary device. The PG2/SYNC-OUT terminal of the secondary must be connected to the SYNC pin of the tertiary device. In this way, the devices operate all six phases 60 degrees out of phase.

GUID-9CE5047F-8F9C-4ABC-841C-2FFD3AF6F5EC-low.gifFigure 7-4 Typical Implementation Allowing Synchronization Using the SYNC/MODE Pin
GUID-B58D942E-8245-45FC-B375-54F888896D31-low.gif
This image shows the conditions needed for detection of a synchronization signal.
Figure 7-5 Typical SYNC/MODE Waveform