SPRADC1 june   2023 DRA829J , DRA829V , TDA4VM

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1 Different Types of Memories on the TDA4VM
  5. 2Memory Overview and Intended Usage
    1. 2.1 PSROM
      1. 2.1.1 Typical Use Cases
    2. 2.2 PSRAM
      1. 2.2.1 Typical Use Cases
    3. 2.3 MSMC RAM
      1. 2.3.1 Typical Use Cases
      2. 2.3.2 Relevant Links
    4. 2.4 MSRAM
      1. 2.4.1 Typical Use Cases
    5. 2.5 ARM Cortex A72 Subsystem
      1. 2.5.1 L1/L2 Cache Memory
      2. 2.5.2 L3 Memory
      3. 2.5.3 Relevant Links
    6. 2.6 ARM Cortex R5F Subsystem
      1. 2.6.1 L1 Memory System
      2. 2.6.2 Cache
      3. 2.6.3 Tightly Coupled Memory (TCM)
      4. 2.6.4 Typical Use Case
      5. 2.6.5 Relevant Links
    7. 2.7 TI's C6x Subsystem
      1. 2.7.1 Memory Layout
      2. 2.7.2 Relevant Links
    8. 2.8 TI's C7x Subsystem
      1. 2.8.1 Memory Layout
      2. 2.8.2 Relevant Links
    9. 2.9 DDR Subsystem
      1. 2.9.1 Relevant Links
  6. 3Performance numbers
    1. 3.1 SDK Data Sheet
    2. 3.2 Memory Access Latency
  7. 4Software Careabouts When Using Different Memories
    1. 4.1 How to Modify Memory Map for RTOS Firmwares
    2. 4.2 DDR Sharing Between RTOS Core and HLOS
    3. 4.3 MCU On-Chip RAM Usage by Bootloader
    4. 4.4 MSMC RAM Default SDK Usage
      1. 4.4.1 MSMC RAM Reserved Sections
      2. 4.4.2 MSMC RAM Configuration as Cache and SRAM
    5. 4.5 Usage of ATCM from MCU R5F
    6. 4.6 Usage of DDR to Execute Code from R5F
  8. 5Summary

TI's C7x Subsystem

The TMS320C71x is the next-generation fixed and floating-point DSP platform. The C71x DSP is a new core in the Texas Instruments' DSP family. The C71x DSP supports vector signal processing, providing significant lift in DSP processing power over a broad range of general signal processing tasks in comparison to the C6x DSP family. In addition, the C71x provides several specialized functions which accelerate targeted functions by more than 30 times. Besides expanding vector processing capabilities, the new C71x core also incorporates advanced techniques to improve control code efficiency and ease of programming such as branch prediction, protected pipeline, precise exception and virtual memory management.